×

On the bounded cohomology of ergodic group actions. (English) Zbl 1461.37005

The authors show the existence of bounded, continuous, transitive cocycles over a transitive action by homeomorphisms of any finitely generated group on a Polish space and of bounded, measurable, ergodic cocycles over any ergodic, probability-preserving action of \({\mathbb Z}^d\). A few open problems show that the techniques cannot be easily generalized or adapted to more general situations.

MSC:

37A15 General groups of measure-preserving transformations and dynamical systems
37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
28D15 General groups of measure-preserving transformations

References:

[1] Aaronson, J.; Lemanczyk, M.; Volny, D., A cut salad of cocycles, Fund. Math., 157, 99-119 (1998) · Zbl 0966.28010 · doi:10.4064/fm-157-2-3-99-119
[2] Aaronson, J.; Weiss, B., On Herman’s theorem for ergodic, amenable group extensions of endomorphisms, Ergodic Theory Dynam. Systems, 24, 1283-1293 (2004) · Zbl 1087.37004 · doi:10.1017/S0143385703000713
[3] Besicovitch, A. S., A problem on topological transformation of the plane, Fund. Math., 28, 61-65 (1937) · Zbl 0015.37503
[4] Breiman, L., Probability (1968), Reading, MA-London-Don Mills, ON: Addison-Wesley, Reading, MA-London-Don Mills, ON · Zbl 0174.48801
[5] Connes, A.; Feldman, J.; Weiss, B., An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems, 1, 431-450 (1982) · Zbl 0491.28018 · doi:10.1017/S014338570000136X
[6] Conze, J. P., Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 25, 11-30 (1972) · Zbl 0261.28015 · doi:10.1007/BF00533332
[7] Feldman, J.; Moore, C. C., Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math.Soc., 234, 289-324 (1977) · Zbl 0369.22009 · doi:10.1090/S0002-9947-1977-0578656-4
[8] M. R. Herman, Construction de difféomorphismes ergodiques, unpublished, 1979.
[9] Harris, T. E.; Robbins, H., Ergodic theory of Markov chains admitting an infinite invariant measure, Proc. Natl. Acad. Sci. USA, 39, 860-864 (1953) · Zbl 0051.10503 · doi:10.1073/pnas.39.8.860
[10] Katok, A.; Spatzier, R. J., First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Etudes Sci. Publ. Math., 79, 131-156 (1994) · Zbl 0819.58027 · doi:10.1007/BF02698888
[11] Katznelson, Y.; Weiss, B., Commuting measure-preserving transformations, Israel J. Math., 12, 161-173 (1972) · Zbl 0239.28014 · doi:10.1007/BF02764660
[12] Ornstein, D. S.; Weiss, B., Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math., 48, 1-141 (1987) · Zbl 0637.28015 · doi:10.1007/BF02790325
[13] Schmidt, K., Cocycles on Ergodic Transformation Groups (1977), Delhi: Macmillan, Delhi · Zbl 0421.28017
[14] Schmidt, K., The cohomology of higher-dimensional shifts of finite type, Pacific J. Math., 170, 237-269 (1995) · Zbl 0866.28016 · doi:10.2140/pjm.1995.170.237
[15] Sidorov, E. A., Topologically transitive cylindrical cascades, Mat. Zametki, 14, 441-452 (1973) · Zbl 0284.54025
[16] Snirelman, L. G., Example of a trnsformation of the plane, Izv. Donsk. Politekhn. Inst., 4, 64-74 (1930)
[17] Schmidt, K.; Walters, P., Mildly mixing actions of locally compact groups, Proc. London Math.Soc.(3), 45, 506-518 (1982) · Zbl 0523.28021 · doi:10.1112/plms/s3-45.3.506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.