×

Adaptive fuzzy control of state-feedback time-delay systems with uncertain parameters. (English) Zbl 1478.93319

Summary: This paper describes an effective and relatively simple design method for an adaptive multi-input single-output (MISO) fuzzy controller for a linear plant with partially known parameters including transport delay. The model reference adaptive control idea was applied, incorporating a reference model that defines the desired closed-loop performance. The reference model containing the fuzzy controller and the plant provides control system performances that are not inferior to those attainable with linear state feedback. The frequency-domain stability conditions for nonlinear state feedback are formulated. They are crucial for the proposed approach and guarantee stability and convergence of the adaptation process. Unlike in other works, the number of MISO fuzzy controller inputs has no restrictions. In this way, the design procedure generalizes the results reported thus far. The idea of automatic fuzzy controller tuning to obtain quasi-optimal system behavior is proposed. The adaptive fuzzy controller design procedure is exemplified for third- and fourth-order systems with delayed feedback.

MSC:

93C40 Adaptive control/observation systems
93C42 Fuzzy control/observation systems
93B52 Feedback control
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C43 Delay control/observation systems
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Richard, J.-P., Time-delay systems: an overview of some recent advances and open problems, Automatica, 39, 10, 1667-1694 (2003) · Zbl 1145.93302
[2] Haidegger, T.; Kovács, L.; Preitl, S.; Precup, R.-E.; Benyó, B.; Benyó, Z., Controller design solutions for long distance telesurgical applications, Int. J. Artif. Intell., 6, 48-71 (2011)
[3] K. Gu, J. Chen, V.L. Kharitonov, Stability of Time-delay Systems, Springer Science + Business Media, LLC, 2003.https://doi.org/10.1007/978-1-4612-0039-0. · Zbl 1039.34067
[4] Nandiganahalli, J. S.; Kwon, C.; Hwang, I., Delay-tolerant adaptive robust tracking control of uncertain time-delay systems, IEEE Trans. Autom. Control, 65, 2, 695-710 (2020) · Zbl 1533.93372
[5] Pedrycz, W., Fuzzy Control and Fuzzy Systems (1993), John Wiley & Sons Inc: John Wiley & Sons Inc New York, NY, USA · Zbl 0839.93006
[6] Acampora, G.; Gaeta, M.; Loia, V.; Vasilakos, A., Interoperable and adaptive fuzzy services for ambient intelligence applications, ACM Trans. Autonomous Adaptive Syst., 5, 2, 1-26 (2010)
[7] Precup, R.-E.; Hellendoorn, H., A survey on industrial applications of fuzzy control, Comput. Ind., 62, 3, 213-226 (2011)
[8] Alvarez Gil, R.; Johanyák, Z.; Kovács, T., Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation, Int. J. Artif. Intell., 16, 20-40 (2018)
[9] Subramanian, R. G.; Elumalai, V. K., Multi-loop nonlinear control design for performance improvement of LTI systems, ISA Trans., 70, 132-138 (2017)
[10] Zikidis, K. C.; Vasilakos, A. V., ASAFES2: a novel, neuro-fuzzy architecture for fuzzy computing, based on functional reasoning, Fuzzy Sets Syst., 83, 1, 63-84 (1996)
[11] (Aracil, J.; Gordillo, F., Stability Issues in Fuzzy Control, Studies in Fuzziness and Soft Computing (2000), Physica-Verlag: Physica-Verlag Heidelberg New York) · Zbl 0934.00017
[12] Kluska, J.; Wiktorowicz, K., Integral evaluations for a class of multivariable fuzzy control systems, IFAC Proc. Vol., 35, 1, 97-102 (2002)
[13] Er, M. J.; Mandal, S., A survey of adaptive fuzzy controllers: Nonlinearities and classifications, IEEE Trans. Fuzzy Syst., 24, 5, 1095-1107 (2016)
[14] Oscar Castillo, O. A.; Kutlu, Fatih, Intuitionistic fuzzy control of twin rotor multiple input multiple output systems, J. Intell. Fuzzy Syst., 38, 1, 821-833 (2020)
[15] Moradvandi, A.; Shahrokhi, M.; Malek, S. A., Adaptive fuzzy decentralized control for a class of MIMO large-scale nonlinear state delay systems with unmodeled dynamics subject to unknown input saturation and infinite number of actuator failures, Inf. Sci., 475, 121-141 (2019) · Zbl 1448.93166
[16] Hou, Q.; Dong, J., Adaptive fuzzy reliable control for switched uncertain nonlinear systems based on closed-loop reference model, Fuzzy Sets Syst., 385, 39-59 (2020) · Zbl 1465.93123
[17] Sun, W.; Wang, L.; Wu, Y., Adaptive dynamic surface fuzzy control for state constrained time-delay nonlinear nonstrict feedback systems with unknown control directions, IEEE Trans. Syst. Man Cybern.: Syst., 1-12 (2020)
[18] Roy, S.; Lee, J.; Baldi, S., A new adaptive-robust design for time delay control under state-dependent stability condition, IEEE Trans. Control Syst. Technol., 1-8 (2020)
[19] Yang, X.; Liu, X.; Li, Z., Multimodel approach to robust identification of multiple-input single-output nonlinear time-delay systems, IEEE Trans. Industr. Inf., 16, 4, 2413-2422 (2020)
[20] Zhihua, Qu.; Hull, R. A.; Wang, Jing, Globally stabilizing adaptive control design for nonlinearly-parameterized systems, IEEE Trans. Autom. Control, 51, 6, 1073-1079 (2006) · Zbl 1366.93587
[21] Precup, R.-E.; Tomescu, M.-L.; Dragos, C.-A., Stabilization of Rössler chaotic dynamical system using fuzzy logic control algorithm, Int. J. Gen Syst., 43, 5, 413-433 (2014) · Zbl 1291.93252
[22] Lu, Y., Adaptive-fuzzy control compensation design for direct adaptive fuzzy control, IEEE Trans. Fuzzy Syst., 26, 6, 3222-3231 (2018)
[23] Arefinia, E.; Talebi, H. A.; Doustmohammadi, A., A robust adaptive model reference impedance control of a robotic manipulator with actuator saturation, IEEE Trans. Syst. Man Cybern.: Syst., 50, 2, 409-420 (2020)
[24] Wiktorowicz, K., Output feedback direct adaptive fuzzy controller based on frequency-domain methods, IEEE Trans. Fuzzy Syst., 24, 3, 622-634 (2016)
[25] Wiktorowicz, K., Design of state feedback adaptive fuzzy controllers for second-order systems using a frequency stability criterion, IEEE Trans. Fuzzy Syst., 25, 3, 499-510 (2017)
[26] Kluska, J.; Żabiński, T., PID-like adaptive fuzzy controller design based on absolute stability criterion, IEEE Trans. Fuzzy Syst., 28, 3, 523-533 (2020)
[27] Li, J.; Xia, Y.; Qi, X.; Gao, Z.; Chang, K.; Pu, F., Absolute stability analysis of non-linear active disturbance rejection control for single-input-single-output systems via the circle criterion method, IET Control Theory Appl., 9, 15, 2320-2329 (2015)
[28] Zhang, J.; Tugal, H.; Carrasco, J.; Heath, W. P., Absolute stability of systems with integrator and/or time delay via off-axis circle criterion, IEEE Control Syst. Lett., 2, 3, 411-416 (2018)
[29] Sharifi, M.; Salarieh, H.; Behzadipour, S.; Tavakoli, M., Impedance control of non-linear multi-dof teleoperation systems with time delay: absolute stability, IET Control Theory Appl., 12, 12, 1722-1729 (2018)
[30] Afonin, S. M., Condition absolute stability control system of electromagnetoelastic actuator for communication equipment, Trans. Networks Commun., 8, 1, 08-15 (2020)
[31] Naderi, T.; Materassi, D.; Innocenti, G.; Genesio, R., Revisiting Kalman and Aizerman conjectures via a graphical interpretation, IEEE Trans. Autom. Control, 64, 2, 670-682 (2019) · Zbl 1482.93458
[32] Kudrewicz, J., Frequency-Domain Methods in the Theory of Nonlinear Dynamical Systems (in Polish) (1970), WNT: WNT Warsaw · Zbl 0277.34040
[33] Curtain, R.; Morris, K., Transfer functions of distributed parameter systems: a tutorial, Automatica, 45, 5, 1101-1116 (2009) · Zbl 1162.93300
[34] Magdalena, L., Semantic interpretability in hierarchical fuzzy systems: Creating semantically decouplable hierarchies, Inf. Sci., 496, 109-123 (2019)
[35] Fliess, M.; Join, C., Model-free control, Int. J. Control, 86, 12, 2228-2252 (2013) · Zbl 1311.93031
[36] Han, S. I.; Ha, H.; Lee, J., Barrier Lyapunov function-based model-free constraint position control for mechanical systems, J. Mech. Sci. Technol., 30, 7, 3331-3338 (2016)
[37] Vidyasagar, M., Nonlinear Systems Analysis (1993), Prentice Hall: Prentice Hall Englewood Cliffs, New Jersey · Zbl 0900.93132
[38] Kluska, J., Stability analysis of SISO, MISO and MIMO continuous fuzzy control systems based on theorems of Kudrewicz, Arch. Control Sci., 5, 5-38 (1996) · Zbl 0866.93064
[39] Xia, Y.; Chen, T.; Shan, J., A novel iterative method for computing generalized inverse, Neural Comput., 26, 2, 449-465 (2014) · Zbl 1440.65046
[40] Kluska, J., Transformation lemma on analytical modeling via Takagi-Sugeno fuzzy system and its applications, (Rutkowski, L.; Tadeusiewicz, R.; Zadeh, L. A.; Żurada, J. M., Artificial Intelligence and Soft Computing - ICAISC 2006 (2006), Springer: Springer Berlin Heidelberg, Berlin, Heidelberg), 230-239
[41] Kluska, J., Analytical Methods in Fuzzy Modeling and Control, Studies in Fuzziness and Soft Computing (2009), Springer: Springer Berlin, Heidelberg · Zbl 1226.93002
[42] Kluska, J.; Hajduk, Z., Hardware implementation of P1-TS fuzzy rule-based systems on FPGA, (Rutkowski, L.; Korytkowski, M.; Scherer, R.; Tadeusiewicz, R.; Zadeh, L. A.; Żurada, J. M., Artificial Intelligence and Soft Computing (2013), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 282-293
[43] Kluska, J., Selected applications of P1-TS fuzzy rule-based systems, (Rutkowski, L.; Korytkowski, M.; Scherer, R.; Tadeusiewicz, R.; Zadeh, L. A.; Zurada, J. M., Artificial Intelligence and Soft Computing (2015), Springer International Publishing: Springer International Publishing Cham), 195-206
[44] Smoczek, J., Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system, Mech. Syst. Signal Process., 62, 324-340 (2015)
[45] Kluska, J., New results in analytical modeling using Takagi-Sugeno expert system, (Hryniewicz, O.; Kacprzyk, J.; Koronacki, J.; Wierzchoń, S. T., Issues in Intelligent Systems Paradigms (2005), Exit: Exit Warsaw), 79-94
[46] Michiels, W.; Engelborghs, K.; Vansevenant, P.; Roose, D., Continuous pole placement for delay equations, Automatica, 38, 5, 747-761 (2002) · Zbl 1034.93026
[47] Vyhlidal, T.; Zitek, P., Mapping based algorithm for large-scale computation of quasi-polynomial zeros, IEEE Trans. Autom. Control, 54, 1, 171-177 (2009) · Zbl 1367.65076
[48] Landry, M.; Campbell, S. A.; Morris, K.; Aguilar, C. O., Dynamics of an inverted pendulum with delayed feedback control, SIAM J. Appl. Dyn. Syst., 4, 2, 333-351 (2005) · Zbl 1170.93366
[49] J.A. Farrell, M.M. Polycarpou, Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches (Adaptive and Learning Systems for Signal Processing, Communications and Control Series), Wiley-Interscience, USA, 2006.
[50] Spooner, J. T.; Ordonez, R.; Maggiore, M.; Passino, K. M., Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximation Techniques (2002), John Wiley & Sons Inc: John Wiley & Sons Inc New York, NY, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.