×

Dixmier’s problem 6 for the Weyl algebra (the generic type problem). (English) Zbl 1094.16016

Dixmier’s sixth problem for an algebra \(A\) over a field \(k\) of characteristic zero can be reformulated in the following terms. Let \(a\in A\) and \(f(t)\in k[t]\), \(\deg f(t)>1\). Is it the case that \(\text{ad\,}f(a)\) has a nonzero eigenvalue? Suppose that \({\mathcal D}(X)\) is the ring of differential operators on a smooth irreducible affine algebraic variety. Then all eigenvalues of \(\text{ad\,}f(a)\), \(a\in{\mathcal D}(X)\), vanish.
Let \(A\) be a noncommutative algebra of Gelfand-Kirillov dimension \(<3\) such that \(\overline k\otimes_kA\) is embedded into a division ring in which the centralizer of any noncentral element is commutative. Then for any noncentral element \(a\in A\) each noncentral element \(b\) in \(A\) commuting with \(a\) satisfies one of the conditions: (1) \(b\) is strongly nilpotent, (2) \(b\) is weakly nilpotent, (3) \(b\) is generic with the exception of the set of strongly semi-simple elements, (4) \(b\) is generic with the exception of the set of weakly semi-simple elements, (5) \(b\) is generic.
This theorem is applied to the Weyl algebra \(A_1\), the quantum plane, the ring of differential operators of a smooth irreducible algebraic curve, the universal enveloping algebras \(U(\text{sl}_2)\), \(U_q(\text{sl}_2)\).

MSC:

16S32 Rings of differential operators (associative algebraic aspects)
16S30 Universal enveloping algebras of Lie algebras
16N40 Nil and nilpotent radicals, sets, ideals, associative rings
16U70 Center, normalizer (invariant elements) (associative rings and algebras)

References:

[1] Amitsur S. A., Pacific J. Math. 8 pp 1– (1958)
[2] DOI: 10.1007/BF02366342 · Zbl 0928.16029 · doi:10.1007/BF02366342
[3] DOI: 10.1016/0001-8708(85)90020-9 · Zbl 0557.34044 · doi:10.1016/0001-8708(85)90020-9
[4] DOI: 10.1090/S0273-0979-1982-15032-7 · Zbl 0539.13012 · doi:10.1090/S0273-0979-1982-15032-7
[5] Bavula V. V., Algebra i Analiz 4 pp 75– (1992)
[6] DOI: 10.2307/3062144 · Zbl 0995.16019 · doi:10.2307/3062144
[7] DOI: 10.1016/j.jalgebra.2004.09.013 · Zbl 1069.16031 · doi:10.1016/j.jalgebra.2004.09.013
[8] DOI: 10.1142/S0219498805001368 · Zbl 1095.16012 · doi:10.1142/S0219498805001368
[9] Borho W., Lecture Notes in Mathematics 357, in: Primideale in Einhüllenden Auflösbarer Lie-Algebren (Beschreibung durch Bahnenräume). (German) (1973) · Zbl 0293.17005
[10] DOI: 10.1215/S0012-7094-98-09218-3 · Zbl 0974.16007 · doi:10.1215/S0012-7094-98-09218-3
[11] Dixmier J., J. Math. Pures et Appl. 45 pp 1– (1966)
[12] Dixmier J., Bull. Soc. Math. France 96 pp 209– (1968)
[13] DOI: 10.1006/jabr.1993.1219 · Zbl 0807.16029 · doi:10.1006/jabr.1993.1219
[14] DOI: 10.1216/RMJ-1983-13-4-573 · Zbl 0532.16002 · doi:10.1216/RMJ-1983-13-4-573
[15] DOI: 10.2307/2373768 · Zbl 0316.16036 · doi:10.2307/2373768
[16] Krause G., Graduate Studies in Mathematics, 22 (2000)
[17] Kirkman , E. E. , Small , L. W. ( 1992 ).q-analogs of harmonic oscillators and related rings . Wake Forest University and University of California . · Zbl 0783.17006
[18] Malliavin M.-P., C. R. Acad. Sci. Paris 317 pp 1099– (1993)
[19] Mazorchuk V., AMA Algebra Montp. Announc. pp 6– (2001)
[20] DOI: 10.1016/0021-8693(73)90026-4 · Zbl 0266.16031 · doi:10.1016/0021-8693(73)90026-4
[21] McConnell J. C., Graduate Studies in Mathematics, 30, in: Noncommutative Noetherian Rings (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.