×

Indecomposable generalized weight modules over the algebra of polynomial integro-differential operators. (English) Zbl 1431.16022

Summary: For the algebra \( \mathbb{I}_1= K\langle x, \frac {d}{dx}, \int \rangle \) of polynomial integro-differential operators over a field \( K\) of characteristic zero, a classification of indecomposable, generalized weight \( \mathbb{I}_1\)-modules of finite length is given. Each such module is an infinite dimensional uniserial module. Ext-groups are found between indecomposable generalized weight modules; it is proven that they are finite dimensional vector spaces.

MSC:

16S32 Rings of differential operators (associative algebraic aspects)
16G99 Representation theory of associative rings and algebras

References:

[1] Bavula, V. V., Finite-dimensionality of \({\rm Ext}^n\) and \({\rm Tor}_n\) of simple modules over a class of algebras, Funktsional. Anal. i Prilozhen.. Funct. Anal. Appl., 25 25, 3, 229-230 (1992) (1991) · Zbl 0755.17018
[2] Bavula, V. V., Generalized Weyl algebras and their representations, Algebra i Analiz. St. Petersburg Math. J., 4 4, 1, 71-92 (1993) · Zbl 0807.16027
[3] Bavula, Vladimir; Bekkert, Viktor, Indecomposable representations of generalized Weyl algebras, Comm. Algebra, 28, 11, 5067-5100 (2000) · Zbl 0963.17004
[4] Bavula, V. V., The algebra of integro-differential operators on a polynomial algebra, J. Lond. Math. Soc. (2), 83, 2, 517-543 (2011) · Zbl 1225.16010
[5] Bavula, V. V., The group of automorphisms of the algebra of polynomial integro-differential operators, J. Algebra, 348, 233-263 (2011) · Zbl 1258.16039
[6] Bavula, V. V., The algebra of integro-differential operators on an affine line and its modules, J. Pure Appl. Algebra, 217, 3, 495-529 (2013) · Zbl 1272.16027
[7] Bavula, V. V., The algebra of polynomial integro-differential operators is a holonomic bimodule over the subalgebra of polynomial differential operators, Algebr. Represent. Theory, 17, 1, 275-288 (2014) · Zbl 1305.16019
[8] Bavula, V. V.; Lu, T., The quantum Euclidean algebra and its prime spectrum, Israel J. Math., 219, 2, 929-958 (2017) · Zbl 1419.17020
[9] Bav-gldim-intdif-JacAlg V. V. Bavula, The global dimension of the algebras of polynomial integro-differential operators \(I_n\) and the Jacobian algebras \(A_n\), arXiv:1705.05227.
[10] Bekkert, Viktor; Benkart, Georgia; Futorny, Vyacheslav, Weight modules for Weyl algebras. Kac-Moody Lie algebras and related topics, Contemp. Math. 343, 17-42 (2004), Amer. Math. Soc., Providence, RI · Zbl 1057.16021
[11] Block, Richard E., The irreducible representations of the Lie algebra \({\mathfrak{s}}{\mathfrak{l}}(2)\)and of the Weyl algebra, Adv. in Math., 39, 1, 69-110 (1981) · Zbl 0454.17005
[12] Futorny, Vyacheslav; Grantcharov, Dimitar; Mazorchuk, Volodymyr, Weight modules over infinite dimensional Weyl algebras, Proc. Amer. Math. Soc., 142, 9, 3049-3057 (2014) · Zbl 1331.17020
[13] Futorny, Vyacheslav; Iyer, Uma N., Representations of \(D_q({\Bbbk}[x])\), Israel J. Math., 212, 1, 473-506 (2016) · Zbl 1348.16020
[14] Guo, Li; Regensburger, Georg; Rosenkranz, Markus, On integro-differential algebras, J. Pure Appl. Algebra, 218, 3, 456-473 (2014) · Zbl 1310.16019
[15] Hartwig, Jonas T., Locally finite simple weight modules over twisted generalized Weyl algebras, J. Algebra, 303, 1, 42-76 (2006) · Zbl 1127.16019
[16] Hartwig, Jonas T., Pseudo-unitarizable weight modules over generalized Weyl algebras, J. Pure Appl. Algebra, 215, 10, 2352-2377 (2011) · Zbl 1246.16020
[17] Mazorchuk, Volodymyr; Turowska, Lyudmyla, Simple weight modules over twisted generalized Weyl algebras, Comm. Algebra, 27, 6, 2613-2625 (1999) · Zbl 0949.17003
[18] L\"u, Rencai; Mazorchuk, Volodymyr; Zhao, Kaiming, Simple weight modules over weak generalized Weyl algebras, J. Pure Appl. Algebra, 219, 8, 3427-3444 (2015) · Zbl 1319.16021
[19] McConnell, J. C.; Robson, J. C., Homomorphisms and extensions of modules over certain differential polynomial rings, J. Algebra, 26, 319-342 (1973) · Zbl 0266.16031
[20] Shipman, Ian, Generalized Weyl algebras: category \(\mathcal{O}\) and graded Morita equivalence, J. Algebra, 323, 9, 2449-2468 (2010) · Zbl 1202.16019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.