×

The classical left regular left quotient ring of a ring and its semisimplicity criteria. (English) Zbl 1367.16027

Summary: Let \(R\) be a ring, \(\mathcal{C}_R\) and \(^\prime \mathcal{C}_R\) be the set of regular and left regular elements of \(R(\mathcal{C}_R\subseteq {}^\prime \mathcal{C}_R)\). Goldie’s theorem is a semisimplicity criterion for the classical left quotient ring \(Q_{l,cl}(R):= {}^\prime \mathcal{C}_R^{-1}R\). Semisimplicity criteria are given for the classical left regular left quotient ring \({}^\prime Q_{l,cl}(R):= {}^\prime \mathcal{C}_R^{-1}R\). As a corollary, two new semisimplicity criteria for \(Q_{l,cl}(R)\) are obtained (in the spirit of Goldie).

MSC:

16S85 Associative rings of fractions and localizations
16P20 Artinian rings and modules (associative rings and algebras)
16U20 Ore rings, multiplicative sets, Ore localization

References:

[1] Bavula, V. V., The algebra of integro-differential operators on an affine line and its modules, J. Pure Appl. Algebra217 (2013) 495-529. arxiv:1011.2997 [math.RA]. · Zbl 1272.16027
[2] Bavula, V. V., The largest left quotient ring of a ring, Comm. Algebra44(8) (2016) 3219-3261, arxiv:1101.5107, [math.RA]. · Zbl 1353.16037
[3] Bavula, V. V., Characterizations of left orders in left Artinian rings, J. Algebr. Appl.13(6) (2014) 1-21, arxiv:1212.3529 [math.RA]. · Zbl 1302.16011
[4] Bavula, V. V., New criteria for a ring to have a semisimple left quotient ring, J. Algebr. Appl.14(6) (2015) 28, doi: 10.1142/S0219498815500905, arxiv:1303.0859 [math.RA]. · Zbl 1332.16023
[5] V. V. Bavula, Left localizable rings and their characterizations, arxiv:1405.4552 [math.RA]. · Zbl 1401.16033
[6] Bavula, V. V., The largest strong left quotient ring of a ring, J. Algebra (2015) 32, http://dx.doi. org/10.1016/j.algebra.2015.04.037, arxiv:1310.1077. · Zbl 1334.16033
[7] Faith, C., Algebra. II. Ring theory, , Vol. 191 (Springer-Verlag, Berlin, 1976). · Zbl 0335.16002
[8] Jategaonkar, A. V., Localization in Noetherian Rings, , Vol. 98 (Cambridge University Press, Cambridge, 1986). · Zbl 0589.16014
[9] McConnell, J. C. and Robson, J. C., Noncommutative Noetherian Rings, With the cooperation of L. W. Small, Revised edition, , Vol. 30 (American Mathematical Society, Providence, 2001), p. 636. · Zbl 0980.16019
[10] McConnell, J. C. and Robson, J. C., Homomorphisms and extensions of modules over certain differential polynomial rings. J. Algebra26 (1973) 319-342. · Zbl 0266.16031
[11] Stenström, B., Rings of Quotients (Springer-Verlag, Berlin, 1975). · Zbl 0296.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.