×

The simple modules of certain generalized crossed products. (English) Zbl 0927.16002

The authors classify simple modules for a class of graded rings of the form \(R=\bigoplus_{i\in\mathbb{Z}}R_i\) where \(R_0=D\) is a commutative Dedekind domain, each \(R_i=Dv_i\) is a free left \(D\)-module of rank one, \(v_0=1\) and, for \(a,b\in D\), \(av_ibv_j=a\sigma^i(b)c(i,j)v_{i+j}\) for an automorphism \(\sigma\) of \(D\) and a \(2\)-cocycle \(c\). This class includes the generalized Weyl algebra or GWA \(D(\sigma,a)\) where \(0\neq a\in D\) and \(\sigma\) is an automorphism of \(D\). This is the ring extension of \(D\) generated by \(X\) and \(Y\) subject to the relations \(XY=a\), \(YX=\sigma(a)\) and, for all \(d\in D\), \(Xd=\sigma(d)X\) and \(Yd=\sigma^{-1}(d)Y\). In the above notation, \(v_i=X^i\) if \(i>0\) and \(v_i=Y^{-i}\) if \(i<0\).
The first author [Ukr. Mat. Zh. 44, No. 12, 1628-1644 (1992; Zbl 0810.16003), CMS Conf. Proc. 14, 83-107 (1993; Zbl 0806.17023) and Algebra Anal. 4, No. 1, 75-97 (1992; Zbl 0807.16027)], classified the simple modules of \(D(\sigma,a)\) in the case where no maximal ideal of \(D\) is invariant under a positive power of \(\sigma\) and the present paper generalizes this classification. One example, to which a section is devoted, is the quantum Weyl algebra \(A_1(q)\) over a field \(k\), which is the GWA \(D(\sigma,H)\) where \(\sigma(H)=q^{-1}(H-1)\). There is a \(\sigma\)-invariant maximal ideal of \(D\) which, if \(q\) is not a root of unity, is the unique maximal ideal of \(D\) invariant under a positive power of \(\sigma\).
As in the previous work of the first author and in earlier work of R. E. Block [Lect. Notes Math. 740, 69-79 (1979; Zbl 0414.16017)], on the Weyl algebra \(A_1\), the classification is in terms of the irreducible elements of the Euclidean ring \(B=K[X^{\pm 1};\sigma]\), where \(K\) is the quotient field of \(D\). The ring \(B\) is obtained from \(R\) by localization at \(D\setminus\{0\}\). The simple \(R\)-modules which are torsion with respect to \(D\setminus\{0\}\) are analysed separately from those which are torsion-free. It is shown that there are no torsion-free simple modules if and only if there are infinitely many maximal ideals of \(D\) invariant under positive powers of \(\sigma\).
One interesting example to which the results are applied and which is not a GWA is a factor \(V\) of the enveloping algebra of the Virasoro-Lie algebra. Here \(D=k[H]\), \(\sigma(H)=H-1\), \(v_iv_j=(H-i-1)v_{i+j}\) if \(i+j\neq 0\) and \(v_{-i}v_i=(H+i-1)(H-1)\).
The authors also consider the positively graded case and give a similar classification of simple modules, with the skew polynomial ring \(K[X;\sigma]\) replacing the skew Laurent polynomial ring \(B\) and with some modifications described as not entirely innocent. An example is given to show that the above result on the existence of torsion-free simple modules no longer holds.

MSC:

16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
16S35 Twisted and skew group rings, crossed products
16S36 Ordinary and skew polynomial rings and semigroup rings
16W50 Graded rings and modules (associative rings and algebras)

References:

[1] Arnal, D.; Pinczon, G., On algebraically irreducible representations of the Lie algebrasl, J. Math. Phys., 15, 350-359 (1974) · Zbl 0298.17003
[2] Arnal, D.; Pinczon, G., Idéaux á gauche dans les quotients simple de l’algébre enveloppante de sl(2), Bull. Soc. Math. France, 101, 381-395 (1973) · Zbl 0357.17008
[3] Bamba, K. S., Sur le idéaux maximaux de l’algébre de Weyl \(A_1\), C. R. Acad. Sci. Paris Sér. I Math., 283, 71-74 (1976) · Zbl 0335.16033
[4] Bavula, V. V., The finite-dimensionality of \(Ext^n\)’s and \(Tor_n\)’s of simple modules over a class of algebras, Funktsional. Anal. i Prilozhen., 25, 80-82 (1991) · Zbl 0755.17018
[5] Bavula, V. V., The simple \(DXYa\), Ukrainian Math. J., 44, 1628-1644 (1992) · Zbl 0810.16003
[6] V. V. Bavula, 1993, Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules, representations of algebras, CMS Conference Proceedings, V. DlabH. Lenzing, 14, 83, 106; V. V. Bavula, 1993, Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules, representations of algebras, CMS Conference Proceedings, V. DlabH. Lenzing, 14, 83, 106 · Zbl 0806.17023
[7] Bavula, V. V., Generalized Weyl algebras and their reprsentations, Algebra i Analiz, 4, 75-97 (1992)
[8] Bavula, V. V., Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras, Bull. Sci. Math., 120, 293-335 (1996) · Zbl 0855.16010
[9] V. V. Bavula, 1996, Global dimension of generalized Weyl algebras, CMS Conference Proceedings, R. BautistaR. Martinez-VillaJ. A. de la Pena, 18, 81, 107; V. V. Bavula, 1996, Global dimension of generalized Weyl algebras, CMS Conference Proceedings, R. BautistaR. Martinez-VillaJ. A. de la Pena, 18, 81, 107 · Zbl 0857.16025
[10] Block, R. E., Classification of the irreducible representations ofsl, Bull. Amer. Math. Soc. (N.S.), 1, 247-250 (1979) · Zbl 0412.17009
[11] Block, R. E., The irreducible representations of the Weyl algebra \(A_1\), (Malliavin, M. P., Séminaire d’Algébre Paul Dubreil (Proceedings, Paris, 1977-1978). Séminaire d’Algébre Paul Dubreil (Proceedings, Paris, 1977-1978), Lecture Notes in Mathematics, 740 (1979), Springer-Verlag: Springer-Verlag Berlin/New York), 69-79 · Zbl 0414.16017
[12] Block, R. E., The irreducible representations of the Lie algebrasl, Adv. Math., 39, 69-110 (1981) · Zbl 0454.17005
[13] Dixmier, J., Represéntations irrèductibles des algébres de Lie nilpotentes, An. Acad. Brasil. Ciênc., 35, 491-519 (1963) · Zbl 0143.05302
[14] Dixmier, J., Sur les algébres de Weyl, Bull. Soc. Math. France, 96, 209-242 (1968) · Zbl 0165.04901
[15] Van den Essen, A.; Levelt, A., An explicit description of all simple \(KX\), Contemp. Math., 130, 121-131 (1992) · Zbl 0812.16037
[16] Jacobson, N., The Theory of Rings (1943), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0060.07302
[17] Jordan, D. A., Krull and global dimension of certain iterated skew polynomial rings, Contemp. Math., 130, 201-213 (1992) · Zbl 0779.16011
[18] Jordan, D. A., Primitivity in skew Laurent polynomial rings and related rings, Math. Z., 213, 353-371 (1993) · Zbl 0797.16037
[19] Hodges, T. J., Noncommutative deformation of type-A Kleinian singularities, J. Algebra, 161, 271-290 (1993) · Zbl 0807.16029
[20] E. E. Kirkman, L. W. Small, 1992, \(q\); E. E. Kirkman, L. W. Small, 1992, \(q\)
[21] Lemire, F. W., Existence of weight space decompositions for irreducible representations of simple Lie algebras, Canad. Math. Bull., 14, 113-115 (1971) · Zbl 0215.09502
[22] Malliavin, M.-P., L’algèbre d’Heisenberg quantique, C. R. Acad. Sci. Paris Sér. I Math., 317, 1099-1102 (1993) · Zbl 0795.17012
[23] McConnell, J. C.; Robson, J. C., Homomorphism and extensions of modules over certain polynomial rings, J. Algebra, 26, 319-342 (1973) · Zbl 0266.16031
[24] McConnell, J. C.; Robson, J. C., Non-commutative Noethernian rings (1987), Wiley: Wiley Chichester · Zbl 0644.16008
[25] Naśtaśescu, C.; Van Oystaeyen, F., Graded Ring Theory. Graded Ring Theory, Library of Math. (1982), North-Holland: North-Holland Amsterdam · Zbl 0494.16001
[26] C. Nastasescu, F. Van Oystaeyen, Graded Rings and Modules, Lecture Notes in Mathematics, 758, Springer-Verlag, Berlin; C. Nastasescu, F. Van Oystaeyen, Graded Rings and Modules, Lecture Notes in Mathematics, 758, Springer-Verlag, Berlin · Zbl 0418.16001
[27] Rosenberg, A. L., The unitary irreducible representation of the quantum Heisenberg algebra, Comm. Math. Phys., 144, 41-51 (1992) · Zbl 0753.17026
[28] Smith, S. P., A class of algebras similar to the enveloping algebra ofsl, Trans. Amer. Math. Soc., 322, 285-314 (1990) · Zbl 0732.16019
[29] Smith, S. P., Quantum qroups: An introduction and survey for ring theoretists, (Montgomery, S.; Small, L. W., Noncommutative Rings (1992), Springer-Verlag: Springer-Verlag Berlin), 131-178 · Zbl 0744.16023
[30] Zachos, C., Elementary paradigms of quantum algebras, Contemp. Math., 134, 351-377 (1992) · Zbl 0784.17028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.