×

A multiparametric strategy for the two step optimization of structural assemblies. (English) Zbl 1274.49058

Summary: Generally speaking, the objective and constraint functions of a structural optimization problem are implicit with respect to the design variables; their evaluation requires finite element analyses which constitute the most expensive steps of the optimization algorithm. The work presented in this paper concerns the implementation of a two step optimization strategy which consists in optimizing first an empirical model (metamodel), then the full model. In the framework of multilevel model optimization, the computation costs are related, on the one hand, to the construction of global approximations and, on the other hand, to the optimization of the full model. Thus, many numerical simulations are required in order to perform a multilevel optimization. In this context, the objective of associating a multiparametric strategy based on the nonincremental LATIN method with the two step optimization process is to reduce these computation costs. The performance gains thus achieved will be illustrated through the optimization of structural assemblies involving contact with friction. The results obtained will show that the savings associated with the multiparametric procedure can reach a factor of 30.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
49M30 Other numerical methods in calculus of variations (MSC2010)

References:

[1] Barthelemy JF, Haftka R (1993) Approximation concepts for optimum structural design—a review. Struct Optim 5:129-144 · doi:10.1007/BF01743349
[2] Bendsoe MP (1995) Optimization of structural topology, shape and material. Springer, Heidelberg · Zbl 0822.73001 · doi:10.1007/978-3-662-03115-5
[3] Blanzé C, Champaney L, Cognard J, Ladevèze P (1995) A modular approach to structure assembly computations. Application to contact problems. Eng Comput 13(1):15-32
[4] Boucard PA, Champaney L (2003) A suitable computational strategy for the parametric analysis of problems with multiple contact. Int J Numer Methods Eng 57(9):1259-1282 · Zbl 1062.74607 · doi:10.1002/nme.724
[5] Boucard PA, Champaney L (2004) Approche multirésolution pour l’étude paramétrique d’assemblages par contact et frottement. Rev Europ Élém Finis 13:437-448 · doi:10.3166/reef.13.437-448
[6] Box GEP, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Stat 28:195-241 · Zbl 0080.35901 · doi:10.1214/aoms/1177707047
[7] Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc, Ser B Stat Methodol 13(1):1-45 · Zbl 0043.34402
[8] Braibant V, Fleury C (1985) An approximation concepts approach to shape optimal design. Comput Methods Appl Mech Eng 53:119-148 · Zbl 0562.73084 · doi:10.1016/0045-7825(85)90002-7
[9] Chen TY, Yang CM (2005) Multidisciplinary design optimization of mechanisms. Adv Eng Softw 36(5):301-311 · Zbl 1116.70308 · doi:10.1016/j.advengsoft.2004.10.013
[10] Cressie N (1990) The origins of kriging. Math Geol 22:239-252. doi:10.1007/BF00889887 · Zbl 0964.86511 · doi:10.1007/BF00889887
[11] Currin C, Mitchell T, Morris M, Ylvisaker D (1991) Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. J Am Stat Assoc 86(416):953-963 · doi:10.1080/01621459.1991.10475138
[12] Dantzig G, Orden A, Wolfe P (1955) Generalized simplex method for minimizing a linear form under linear inequality restraints. Pac J Math 5:183-195 · Zbl 0064.39402 · doi:10.2140/pjm.1955.5.183
[13] El-Sayed ME, Hsiung CK (1991) Optimum structural design with parallel finite element analysis. Comput Struct 40(6):1469-1474 · Zbl 0850.73198 · doi:10.1016/0045-7949(91)90417-K
[14] Engels H, Becker W, Morris A (2004) Implementation of a multi-level optimisation methodology within the e-design of a blended wing body. Aerosp Sci Technol 8(2):145-153 · doi:10.1016/j.ast.2003.10.001
[15] Fleury C, Braibant V (1986) Structural optimization. A new dual method using mixed variables. Int J Numer Methods Eng 2:409-428 · Zbl 0585.73152 · doi:10.1002/nme.1620230307
[16] Gingold R, Monaghan J (1977) Smooth particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375-389 · Zbl 0421.76032
[17] Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley · Zbl 0721.68056
[18] Haftka R (1988) First- and second-order constraint approximations in structural optimization. Comput Mech 3:89-104 · Zbl 0627.73089 · doi:10.1007/BF00317057
[19] Han SP (1977) A globally convergent method for nonlinear programming. J Optim Theory Appl 22:297-309 · Zbl 0336.90046 · doi:10.1007/BF00932858
[20] Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76(8):1905-1915 · doi:10.1029/JB076i008p01905
[21] Haykin S (1994) Neural networks: a comprehensive foundation, 1st edn. Prentice Hall, Upper Saddle River · Zbl 0828.68103
[22] Hilding D, Torstenfelt B, Klarbring A (2001) A computational methodology for shape optimization of structures in frictionless contact. Comput Methods Appl Mech Eng 190:4043-4060 · Zbl 1013.74056 · doi:10.1016/S0045-7825(00)00310-8
[23] Keane AJ, Petruzzeli N (2000) Aircraft wing design using ga-based multi-level strategies. In: Proceedings 8th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Long Beach, USA, pp A00-40171
[24] Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE int. conf. neural networks, vol 4, pp 1942-1948
[25] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671-680 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[26] Kravanja S, Sorsak A, Kravanja Z (2003) Efficient multilevel minlp strategies for solving large combinatorial problems in engineering. Optim Eng 4(1/2):97-151 · Zbl 1046.90049 · doi:10.1023/A:1021812414215
[27] Ladevèze P (1999) Nonlinear computational structural mechanics—new approaches and non-incremental methods of calculation. Springer, Berlin · Zbl 0912.73003 · doi:10.1007/978-1-4612-1432-8
[28] Li W, Li Q, Steven GP, Xie YM (2005) An evolutionary shape optimization for elastic contact problems subject to multiple load cases. Comput Methods Appl Mech Eng 194:3394-3415 · Zbl 1093.74049 · doi:10.1016/j.cma.2004.12.024
[29] Liu B, Haftka RT, Watson LT (2004) Global-local structural optimization using response surfaces of local optimization margins. Struct Multidisc Optim 27(5):352-359 · doi:10.1007/s00158-004-0393-0
[30] McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239-245 · Zbl 0415.62011
[31] Montgomery D (1997) Design and analysis of experiments. Wiley, New York · Zbl 0910.62067
[32] Nayrolles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307-318 · Zbl 0764.65068 · doi:10.1007/BF00364252
[33] Pedersen, P., The integrated approach of FEM-SLP for solving problems of optimal design, 757-780 (1981), Amsterdam · Zbl 0518.73075 · doi:10.1007/978-94-009-8603-9_30
[34] Pritchard J, Adelman H (1990) Differential equation based method for accurate approximations in optimization. In: Proc. AIAA/ASME/ASCE/AHS/ASC 31st structures, structural dynamics and materials conf. (held in Long Beach, CA) · Zbl 0744.73032
[35] Pritchard J, Adelman H (1991) Differential equation based method for accurate modal approximations. AIAA J 29:484-486 · doi:10.2514/3.10609
[36] Rasmussen J (1998) Nonlinear programming by cumulative approximation refinement. Struct Multidisc Optim 15(1):1-7 · doi:10.1007/BF01197431
[37] Robinson GM, Keane AJ (1999) A case for multi-level optimisation in aeronautical design. Aeronaut J 103:481-485
[38] Sacks J, Schiller SB, Welch WJ (1989) Designs for computer experiments. Technometrics 31(1):41-47 · doi:10.1080/00401706.1989.10488474
[39] Soulier B, Richard L, Hazet B, Braibant V (2003) Crashworthiness optimization using a surrogate approach by stochastic response surface. In: Gogu G, Coutellier D, Chedmail P, Ray P (eds) Recent advances in integrated design and manufacturing in mechanical engineering. Kluwer Academic, pp 159-168
[40] Umesha PK, Venuraju MT, Hartmann D, Leimbach KR (2005) Optimal design of truss structures using parallel computing. Struct Multidisc Optim 29:285-297 · doi:10.1007/s00158-004-0420-1
[41] Zienkiewicz O, Campbell J (1973) Optimum structural design. Wiley, New York · Zbl 0291.73049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.