×

Quantitative homogenization theory for random suspensions in steady Stokes flow. (Homogénéisation quantitative de suspensions aléatoires de particules dans un fluide de Stokes stationnaire.) (English. French summary) Zbl 1497.35031

The authors establish a large-scale regularity theory for the steady Stokes problem in presence of a random suspension of small and rigid particles \( I_{n}\): \(-\Delta u_{g}+\nabla P_{g}=\operatorname{div}(g)\), \(\operatorname{div}(u_{g})=0\), in \(\mathbb{R} ^{d}\setminus \mathcal{I}\), \(D(u_{g})=0\) in \(\mathcal{I}\), \(\int_{\partial I_{n}}(g+\sigma (u_{g},P_{g}))\nu =0\), \(\int_{\partial I_{n}}\Theta (x-x_{n})\cdot \sigma (g+\sigma (u_{g},P_{g}))\nu =0\) \(\forall n\), \(\forall \Theta \in \mathbb{M}^{\mathrm{skew}}\), the subset of skew-symmetric matrices. Here \( \sigma (u,P)=2D(u)-PId=(\partial _{j}u_{i}+\partial _{i}u_{j})-PId\). The authors also prove moment bounds for the associated correctors and optimal estimates on the homogenization error. They introduce a probability space \( (\Omega ;\mathbb{P})\), a random point process \(\mathcal{P}=\{x_{n}\}_{n}\) on \(\mathbb{R}^{d}\), \(d\geq 2\), and a collection of random shapes \( \{I_{n}^{o}\}_{n}\), where \(I_{n}^{o}\) is a connected random Borel subset of the unit ball \(B\) which is centered at 0, that is which satisfies \( \int_{I_{n}^{o}}xdx=0\). They define the corresponding inclusions \( I_{n}=x_{n}+I_{n}^{o}\) centered at the points of \(\mathcal{P}\). The authors assume that the random set \(\mathcal{I}=\cup _{n}I_{n}\) is stationary and ergodic, that the random shapes \(\{I_{n}^{o}\}_{n}\) satisfy interior and exterior ball conditions with radius \(\delta >0\), a fixed deterministic constant, almost surely, and that \((I_{n}^{+}+\delta B)\cap (I_{m}^{+}+\delta B)=\varnothing \), almost surely for all \(n\neq m\), where \( I_{n}^{+}\) denotes the convex hull of \(I_{n}\). They also assume that there exists a non-increasing weight function \(\pi :\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) with superalgebraic decay: \(\pi (l)\leq C_{p}\left\langle l\right\rangle ^{p}\) for all \(p<1\), such that the random set \(\mathcal{I}\) is such that \(\mathrm{Var}[Y(\mathcal{I})]\) is bounded from above for all \(\sigma ( \mathcal{I})\)-measurable random variables \(Y(\mathcal{I})\). They quote from their previous paper [Arch. Ration. Mech. Anal. 239, No. 2, 1025–1060 (2021; Zbl 1456.76134)] the existence and properties of correctors \((\psi _{E},\Sigma _{E})\in H_{\mathrm{loc}}^{1}(\mathbb{R}^{d})^{d}\times L_{\mathrm{loc}}^{2}( \mathbb{R}^{d}\setminus \mathcal{I})\) solution to the infinite-volume corrector problem: \(-\Delta \psi _{E}+\nabla \psi _{E}=0\), \(\operatorname{div}(\psi _{E})=0\) in \(\mathbb{R}^{d}\setminus \mathcal{I}\), \(D(\psi _{E}+Ex)=0\) in \(\mathcal{I} \), \(\int_{\partial I_{n}}\sigma (\psi _{E}+E(x-x_{n}),\Sigma _{E})\nu =0\), \( \int_{\partial I_{n}}\Theta (x-x_{n})\cdot \sigma (\psi _{E}+E(x-x_{n}),\Sigma _{E})\nu =0\) \(\forall n\), \(\forall \Theta \in \mathbb{ M}^{\mathrm{skew}}\). The first main result proves uniform estimates for the \(L^{q}\)-norm of \([(\nabla \psi _{E},\Sigma _{E}1_{\mathbb{R}^{d}\setminus \mathcal{I }})]_{2}\) and \([\psi _{E}(x)]_{2}\), where \([f]_{2}(x)=(\frac{1}{\left\vert B(x)\right\vert }\int_{B(x)}\left\vert f\right\vert ^{2}))^{1/2}\). The authors then prove a quenched large-scale Schauder theory, a quenched large-scale \(L^{p}\)-regularity and an annealed \(L^{p}\)-regularity for the solution \((u_{g},P_{g})\) to the above steady Stokes problem. Finally, they prove a quantitative homogenization result for this steady Stokes problem, giving the expressions of the effective viscosity tensor and of the corrector in the present context. For the proof, the authors establish a Meyers-type perturbative result, they transform the above Stokes and corrector problems in single equations in the whole space \(\mathbb{R}^{d}\) and they prove localized pressure estimates. They also use properties of the Bogovskii operator, a dual Calderon-Zygmund Lemma, Gehring’s Lemma and a reverse Jensen’s inequality.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35Q35 PDEs in connection with fluid mechanics
35R60 PDEs with randomness, stochastic partial differential equations
76M50 Homogenization applied to problems in fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows

Citations:

Zbl 1456.76134

References:

[1] Armstrong, S.; Kuusi, T.; Mourrat, J.-C., Mesoscopic higher regularity and subadditivity in elliptic homogenization, Comm. Math. Phys., 347, 2, 315-361 (2016) · Zbl 1357.35025 · doi:10.1007/s00220-016-2663-2
[2] Armstrong, S.; Kuusi, T.; Mourrat, J.-C., The additive structure of elliptic homogenization, Invent. Math., 208, 3, 999-1154 (2017) · Zbl 1377.35014 · doi:10.1007/s00222-016-0702-4
[3] Armstrong, S.; Kuusi, T.; Mourrat, J.-C., Quantitative stochastic homogenization and large-scale regularity, 352 (2019), Springer: Springer, Cham · Zbl 1482.60001 · doi:10.1007/978-3-030-15545-2
[4] Armstrong, S. N.; Daniel, J.-P., Calderón-Zygmund estimates for stochastic homogenization, J. Funct. Anal., 270, 1, 312-329 (2016) · Zbl 1330.35024 · doi:10.1016/j.jfa.2015.09.014
[5] Armstrong, S. N.; Mourrat, J.-C., Lipschitz regularity for elliptic equations with random coefficients, Arch. Rational Mech. Anal., 219, 1, 255-348 (2016) · Zbl 1344.35048 · doi:10.1007/s00205-015-0908-4
[6] Armstrong, S. N.; Smart, C. K., Quantitative stochastic homogenization of convex integral functionals, Ann. Sci. École Norm. Sup. (4), 49, 2, 423-481 (2016) · Zbl 1344.49014 · doi:10.24033/asens.2287
[7] Avellaneda, M.; Lin, F.-H., Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40, 6, 803-847 (1987) · Zbl 0632.35018 · doi:10.1002/cpa.3160420203
[8] Avellaneda, M.; Lin, F.-H., \(L^p\) bounds on singular integrals in homogenization, Comm. Pure Appl. Math., 44, 8-9, 897-910 (1991) · Zbl 0761.42008 · doi:10.1002/cpa.3160440805
[9] Batchelor, G. K., Sedimentation in a dilute dispersion of spheres, J. Fluid Mech., 52, 2, 245-268 (1972) · Zbl 0252.76069 · doi:10.1017/S0022112072001399
[10] Braides, A.; Garroni, A., Homogenization of periodic nonlinear media with stiff and soft inclusions, Math. Models Methods Appl. Sci., 5, 4, 543-564 (1995) · Zbl 0836.73003 · doi:10.1142/S0218202595000322
[11] Caflisch, R. E.; Luke, J. H. C., Variance in the sedimentation speed of a suspension, Phys. Fluids, 28, 3, 759-760 (1985) · Zbl 0586.76044 · doi:10.1063/1.865095
[12] Delmotte, T.; Deuschel, J.-D., On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to \(\nabla \phi\) interface model, Probab. Theory Related Fields, 133, 3, 358-390 (2005) · Zbl 1083.60082 · doi:10.1007/s00440-005-0430-y
[13] Diening, L.; Růžička, M.; Schumacher, K., A decomposition technique for John domains, Ann. Acad. Sci. Fenn. Math., 35, 1, 87-114 (2010) · Zbl 1194.26022 · doi:10.5186/aasfm.2010.3506
[14] Duerinckx, M., Effective viscosity of random suspensions without uniform separation (2020)
[15] Duerinckx, M.; Gloria, A., Multiscale functional inequalities in probability: Concentration properties, ALEA Lat. Am. J. Probab. Math. Stat., 17, 1, 133-157 (2020) · Zbl 1456.60053 · doi:10.30757/alea.v17-06
[16] Duerinckx, M.; Gloria, A., Multiscale functional inequalities in probability: Constructive approach, Ann. H. Lebesgue, 3, 825-872 (2020) · Zbl 1472.60086 · doi:10.5802/ahl.47
[17] Duerinckx, M.; Gloria, A., On Einstein’s effective viscosity formula (2020)
[18] Duerinckx, M.; Gloria, A., Corrector equations in fluid mechanics: Effective viscosity of colloidal suspensions, Arch. Rational Mech. Anal., 239, 1025-1060 (2021) · Zbl 1456.76134 · doi:10.1007/s00205-020-01589-1
[19] Duerinckx, M.; Gloria, A., Sedimentation of random suspensions and the effect of hyperuniformity, Ann. PDE, 8, 1, 66 p. pp. (2022) · Zbl 1507.35173 · doi:10.1007/s40818-021-00115-0
[20] Duerinckx, M.; Otto, F., Higher-order pathwise theory of fluctuations in stochastic homogenization, Stochastic Partial Differ. Equ. Anal. Comput., 8, 3, 625-692 (2020) · Zbl 1456.35017 · doi:10.1007/s40072-019-00156-4
[21] Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Ann. Physics, 19, 2, 289-306 (1906) · JFM 37.0811.01 · doi:10.1002/andp.19063240204
[22] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems (2011), Springer: Springer, New York · Zbl 1245.35002 · doi:10.1007/978-0-387-09620-9
[23] Gehring, F. W., The \(L^p\)-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130, 265-277 (1973) · Zbl 0258.30021 · doi:10.1007/BF02392268
[24] Giaquinta, M.; Modica, G., Regularity results for some classes of higher order non linear elliptic systems, J. reine angew. Math., 311/312, 145-169 (1979) · Zbl 0409.35015
[25] Gloria, A., A scalar version of the Caflisch-Luke paradox, Comm. Pure Appl. Math., 74, 7, 1403-1452 (2021) · Zbl 1479.76025 · doi:10.1002/cpa.21970
[26] Gloria, A.; Neukamm, S.; Otto, F., An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations, ESAIM Math. Model. Numer. Anal., 48, 2, 325-346 (2014) · Zbl 1307.35029 · doi:10.1051/m2an/2013110
[27] Gloria, A.; Neukamm, S.; Otto, F., Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics, Invent. Math., 199, 2, 455-515 (2015) · Zbl 1314.39020 · doi:10.1007/s00222-014-0518-z
[28] Gloria, A.; Neukamm, S.; Otto, F., A regularity theory for random elliptic operators, Milan J. Math., 88, 1, 99-170 (2020) · Zbl 1440.35064 · doi:10.1007/s00032-020-00309-4
[29] Gloria, A.; Neukamm, S.; Otto, F., Quantitative estimates in stochastic homogenization for correlated coefficient fields, Anal. PDE, 14, 8, 2497-2537 (2021) · Zbl 1485.35156 · doi:10.2140/apde.2021.14.2497
[30] Gloria, A.; Otto, F., An optimal variance estimate in stochastic homogenization of discrete elliptic equations, Ann. Probab., 39, 3, 779-856 (2011) · Zbl 1215.35025 · doi:10.1214/10-AOP571
[31] Gloria, A.; Otto, F., An optimal error estimate in stochastic homogenization of discrete elliptic equations, Ann. Appl. Probab., 22, 1, 1-28 (2012) · Zbl 1387.35031 · doi:10.1214/10-AAP745
[32] Gloria, A.; Otto, F., The corrector in stochastic homogenization: optimal rates, stochastic integrability, and fluctuations (2015)
[33] Gloria, A.; Otto, F., Quantitative results on the corrector equation in stochastic homogenization, J. Eur. Math. Soc. (JEMS), 19, 3489-3548 (2017) · Zbl 1387.35032 · doi:10.4171/JEMS/745
[34] Höfer, R. M., Convergence of the method of reflections for particle suspensions in Stokes flows, J. Differential Equations, 297, 81-109 (2021) · Zbl 1468.76071 · doi:10.1016/j.jde.2021.06.020
[35] Jikov, V. V., Some problems of extension of functions arising in connection with the homogenization theory, Differ. Uravn., 26, 1, 39-51 (1990)
[36] Jikov, V. V.; Kozlov, S. M.; Oleĭnik, O. A., Homogenization of differential operators and integral functionals (1994), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0838.35001 · doi:10.1007/978-3-642-84659-5
[37] Josien, M.; Otto, F., The annealed Calderón-Zygmund estimate as convenient tool in quantitative stochastic homogenization (2020) · Zbl 1494.35022
[38] Koch, D. L.; Shaqfeh, E. S. G., Screening in sedimenting suspensions, J. Fluid Mech., 224, 275-303 (1991) · Zbl 0721.76031 · doi:10.1017/S0022112091001763
[39] Kunstmann, P. C.; Weis, L., Functional analytic methods for evolution equations, 1855, Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus, 65-311 (2004), Springer: Springer, Berlin · Zbl 1097.47041 · doi:10.1007/978-3-540-44653-8_2
[40] Marahrens, D.; Otto, F., Annealed estimates on the Green function, Probab. Theory Related Fields, 163, 3-4, 527-573 (2015) · Zbl 1342.60101 · doi:10.1007/s00440-014-0598-0
[41] Shen, Z., The \(L^p\) boundary value problems on Lipschitz domains, Adv. Math., 216, 212-254 (2007) · Zbl 1210.35080 · doi:10.1016/j.aim.2007.05.017
[42] Shen, Z., Lectures on the analysis of nonlinear partial differential equations. Part 2, 2, The Calderón-Zygmund lemma revisited, 203-224 (2012), Int. Press: Int. Press, Somerville, MA · Zbl 1290.42040
[43] Zhikov, V. V., Averaging of functionals in the calculus of variations and elasticity, Math. USSR-Izv., 29, 33-66 (1987) · Zbl 0599.49031 · doi:10.1070/IM1987v029n01ABEH000958
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.