×

A note on quasi-paranormal operators. (English) Zbl 1291.47016

Let \(T\) be a bounded linear operator on an infinite-dimensional complex separable Hilbert space \({\mathcal H}\). In this paper, the authors consider the new class \({\mathcal Q}{\mathcal P}\) of operators satisfying \(\| T^2x\|^2\leq\| T^3x\|\,\| Tx\|\) for all \(x\in{\mathcal H}\) and study basic properties of such operators. In particular, they prove that, if \(T\in{\mathcal Q}{\mathcal P}\) and \(E\) is the Riesz idempotent for a nonzero isolated point \(\lambda_0\in\sigma(T)\), then \(E\) is self-adjoint if and only if \(N(T-\lambda_0)\subset N(T^*-\overline{\lambda_0})\).
Reviewer’s remark. In Proposition 2.13, saying that, if \(T\) is algebraically quasi-paranormal, then \(T\) has Bishop’s property \((\beta)\), the authors use the result from [K. Tanahashi and A. Uchiyama, Oper. Matrices 3, No. 4, 517–524 (2009; Zbl 1198.47039); doi:10.7153/oam-03-29] claiming that every paranormal operator has Bishop’s property \((\beta)\). As shown in [Oper. Matrices 7, No. 3, 737–738 (2013; Zbl 1291.47019), doi:10.7153/oam-07-42], this statement is in fact false.
Reviewer: Eungil Ko (Seoul)

MSC:

47B20 Subnormal operators, hyponormal operators, etc.
47A10 Spectrum, resolvent
47A11 Local spectral properties of linear operators
Full Text: DOI

References:

[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, 2004. · Zbl 1077.47001
[2] Ando T.: Operators with a norm condition. Acta Sci. Math. (Szeged) 33, 169–178 (1972) · Zbl 0244.47021
[3] Duggal B.P.: Hereditarily normaloid operators. Extracta Math. 20, 203–217 (2005) · Zbl 1097.47005
[4] Furuta T.: On the class of paranormal operators. Proc. Japan Acad. 43, 594–598 (1967) · Zbl 0163.37706 · doi:10.3792/pja/1195521514
[5] T. Furuta, Invitation to Linear Operators, CRC Press, 2002.
[6] Furuta T., Ito M., Yamazaki T.: A subclass of paranormal operators including class of log-hyponormal and several related classes. Sci. Math. 1, 389–403 (1998) · Zbl 0936.47009
[7] In Ho Jeon and In Hyoun Kim, On operators satisfying T*|T 2|T T*|T|2 T. Linear Algebra Appl. 418 (2006), 854–862.
[8] C. S. Kubrusly, Hilbert Space Operators A Problem Solving Approach, Birkhäuser, Boston, 2003. · Zbl 1044.47001
[9] K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000. · Zbl 0957.47004
[10] Sheth I.H.: Quasi-hyponormal operators. Rev. Roumaine Math. Pures Appl. 19, 1049–1053 (1974) · Zbl 0295.47036
[11] Stampfli J.: operators and spectral density. Trans. Amer. Math. Soc. 117, 469–476 (1965) · Zbl 0139.31201 · doi:10.1090/S0002-9947-1965-0173161-3
[12] Uchiyama A.: On the Isolated Points of the Spectrum of Paranormal Operators. Integral Equations Operator Theory 55, 145–151 (2006) · Zbl 1105.47021 · doi:10.1007/s00020-005-1386-0
[13] Uchiyama A., Tanahashi K.: On the Riesz idempotent of class A operators. Math. Inequal. Appl. 5, 291–298 (2002) · Zbl 1016.47003
[14] Uchiyama A., Tanahashi K.: Bishop’s property ({\(\beta\)}) for paranormal operators. Oper. Matrices 3, 517–524 (2009) · Zbl 1198.47039 · doi:10.7153/oam-03-29
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.