×

On operators satisfying the generalized Cauchy-Schwarz inequality. (English) Zbl 1380.47014

Summary: In this paper, we introduce the generalized Cauchy-Schwarz inequality for an operator \(T \in {\mathcal {L(H)}}\) and investigate various properties of operators which satisfy the generalized Cauchy-Schwarz inequality. In particular, every \( p\)-hyponormal operator satisfies this inequality. We also prove that if \( T\in {\mathcal {L(H)}}\) satisfies the generalized Cauchy-Schwarz inequality, then \( T\) is paranormal. As an application, we show that if both \( T\) and \( T^{\ast }\) in \( {\mathcal {L(H)}}\) satisfy the generalized Cauchy-Schwarz inequality, then \( T\) is normal.

MSC:

47A63 Linear operator inequalities
47B20 Subnormal operators, hyponormal operators, etc.
Full Text: DOI

References:

[1] Aluthge, Ariyadasa, On \(p\)-hyponormal operators for \(0<p<1\), Integral Equations Operator Theory, 13, 3, 307-315 (1990) · Zbl 0718.47015 · doi:10.1007/BF01199886
[2] Aluthge, Ariyadasa; Wang, Derming, \(w\)-hyponormal operators, Integral Equations Operator Theory, 36, 1, 1-10 (2000) · Zbl 0938.47021 · doi:10.1007/BF01236285
[3] Ando, T., Operators with a norm condition, Acta Sci. Math. (Szeged), 33, 169-178 (1972) · Zbl 0244.47021
[4] Foia{\c{s}}, Ciprian; Jung, Il Bong; Ko, Eungil; Pearcy, Carl, Complete contractivity of maps associated with the Aluthge and Duggal transforms, Pacific J. Math., 209, 2, 249-259 (2003) · Zbl 1066.47037 · doi:10.2140/pjm.2003.209.249
[5] Furuta, Takayuki, On the class of paranormal operators, Proc. Japan Acad., 43, 594-598 (1967) · Zbl 0163.37706
[6] Furuta, Takayuki, Invitation to linear operators, x+255 pp. (2001), Taylor & Francis, Ltd., London · Zbl 1029.47001 · doi:10.1201/b16820
[7] Halmos, Paul Richard, A Hilbert space problem book, Graduate Texts in Mathematics 19, xvii+369 pp. (1982), Springer-Verlag, New York-Berlin · Zbl 0496.47001
[8] Halmos, Paul R., Introduction to Hilbert space and the theory of spectral multiplicity, 114 pp. (1998), AMS Chelsea Publishing, Providence, RI · Zbl 0962.46013
[9] Jung, Il Bong; Ko, Eungil; Pearcy, Carl, Aluthge transforms of operators, Integral Equations Operator Theory, 37, 4, 437-448 (2000) · Zbl 0996.47008 · doi:10.1007/BF01192831
[10] L{\`“o}wner, Karl, \'”Uber monotone Matrixfunktionen, Math. Z., 38, 1, 177-216 (1934) · Zbl 0008.11301 · doi:10.1007/BF01170633
[11] McCarthy, Charles A., \(c_p\), Israel J. Math., 5, 249-271 (1967) · Zbl 0156.37902
[12] Tanahashi, K{\^o}tar{\^o}, On log-hyponormal operators, Integral Equations Operator Theory, 34, 3, 364-372 (1999) · Zbl 0935.47015 · doi:10.1007/BF01300584
[13] Watanabe, Hideharu, Operators characterized by certain Cauchy-Schwarz type inequalities, Publ. Res. Inst. Math. Sci., 30, 2, 249-259 (1994) · Zbl 0815.47028 · doi:10.2977/prims/1195166132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.