×

\(\omega\)-hyponormal operators. II. (English) Zbl 0962.47007

An operator \(T\) on a Hilbert space \({\mathcal H}\) is said to be \(p\)-hyponormal for \(p>0\) if \((T^*T)^p\geq (TT^*)^p\). By using Ando’s result, it is known that every \(p\)-hyponormal operator is paranormal (i.e., \(\|Tx\|^2\leq\|T^2x\|\) \(\|x\|\) for all \(x\in{\mathcal H}\)). Let \(T= U|T|\) be the polar decomposition of \(T\). Then it is also known that every \(p\)-hyponormal operator \(T\) satisfies the condition \[ \bigl||T|^{{1\over 2}} U|T|^{{1\over 2}}\bigr|\geq |T|\geq \bigl||T|^{{1\over 2}} U^*|T|^{{1\over 2}}\bigr|.\tag{\(\sharp\)} \] In this paper, the authors call the operator \(T\) which satisfies the condition \((\sharp)\) is \(w\)-hyponormal and prove that every \(w\)-hyponormal operator is also paranormal.
[For part I see ibid. 36, No. 1, 1-10 (2000; Zbl 0938.47021)].

MSC:

47B20 Subnormal operators, hyponormal operators, etc.
47A30 Norms (inequalities, more than one norm, etc.) of linear operators
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)

Citations:

Zbl 0938.47021
Full Text: DOI

References:

[1] A. Aluthge,On p-hyponormal operators for 0<p<1, Integr. Equat. Oper. Th., 13(1990), 307-315. · Zbl 0718.47015 · doi:10.1007/BF01199886
[2] A. Aluthge,Some generalized theorems on p-hyponormal operators, Integr. Equat. Oper. Th., 24(1996), 497-501. · Zbl 0843.47014 · doi:10.1007/BF01191623
[3] A. Aluthge and D. Wang,w-Hyponormal operators, to appear in Integr. Equat. Oper. Th.
[4] A. Aluthge and D. Wang,Powers of p-hyponormal operators, J. Inequal. Appl., 3(1999), 279-284. · Zbl 0935.47012 · doi:10.1155/S1025583499000181
[5] A. Aluthge and D. Wang,An operator inequality which implies paranormality, Math. Inequal. Appl., 2(1999), 113-119. · Zbl 0926.47014
[6] T. Ando,Operators with a norm condition, Acta Sci. Math., 33(1972), 169-178. · Zbl 0244.47021
[7] S. K. Berberian,Approximate proper vectors, Proc. Amer. Math. Soc., 13(1962), 111-114. · Zbl 0166.40503 · doi:10.1090/S0002-9939-1962-0133690-8
[8] M. Ch? and T. Huruya,p-Hyponormal operators for 0<p<1/2, Coment. Math., 33(1993), 23-29.
[9] T. Furuta,On the class of paranormal operators, Proc. Japan Acad., 43(1967), 594-598. · Zbl 0163.37706 · doi:10.3792/pja/1195521514
[10] P. R. Halmos,A Hilbert Space Problem Book, Van Nostrand, Princeton, New Jersey, 1967.
[11] C. R. Putnam,An inequality for the area of hyponormal spectra, Math. Z., 116(1970), 323-330. · Zbl 0197.10102 · doi:10.1007/BF01111839
[12] N. C. Shah and I. H. Sheth,Some results on quasi-hyponormal operators, J. Indian Math. Soc., 39(1975), 285-291. · Zbl 0414.47019
[13] I. H. Sheth,On hyponormal operators, Proc. Amer. Math. Soc., 17(1966). · Zbl 0148.38403
[14] K. Tanahashi,On log-hyponormal operators, Integr. Equat. Oper. Th., 34(1999), 364-372. · Zbl 0935.47015 · doi:10.1007/BF01300584
[15] J. P. Williams,Operators similar to their adjoints, Proc. Amer. Math. Soc. 20(1969), 121-123. · Zbl 0165.15002 · doi:10.1090/S0002-9939-1969-0233230-5
[16] D. Xia,Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Boston, 1983. · Zbl 0523.47012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.