×

Time-periodic Einstein-Klein-Gordon bifurcations of Kerr. (English) Zbl 1381.83008

Authors’ abstract: We construct one-parameter families of solutions to the Einstein-Klein-Gordon equations bifurcating off the Kerr solution such that the underlying family of spacetimes are each an asymptotically flat, stationary, axisymmetric, black hole spacetime, and such that the corresponding scalar fields are non-zero and time-periodic. An immediate corollary is that for these Klein-Gordon masses, the Kerr family is not asymptotically stable as a solution to the Einstein-Klein-Gordon equations.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C57 Black holes
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
35L05 Wave equation

References:

[1] Agmon, S.: Bounds on exponential decay of eigenfunctions of Schrödinger operators. In: Graffi, S. (ed) Schrödinger Operators. Lecture Notes in Mathematics, vol. 1159, 1-38. Springer, Berlin, Heidelberg (1985) · Zbl 0583.35027
[2] Alexakis S., Ionescu A., Klainerman S.: Hawking’s local rigidity theorem without analyticity. Geome. Funct. Anal. 20(4), 845-869 (2010) · Zbl 1200.35302 · doi:10.1007/s00039-010-0082-7
[3] Alexakis S., Ionescu A., Klainerman S.: Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces. Commun. Math. Phys. 299(1), 89-127 (2010) · Zbl 1200.83059 · doi:10.1007/s00220-010-1072-1
[4] Alexakis, S., Schule V.: Non-existence of time-periodic vacuum spacetimes. J. Differ. Geom. (to appear). arXiv:1504.04592 (2015) · Zbl 1285.83014
[5] Alexakis S., Schlue V., Shao A.: Unique continuation from infinity for linear waves. Adv. Math. 286, 481-544 (2016) · Zbl 1329.35087 · doi:10.1016/j.aim.2015.08.028
[6] Andersson L., Blue P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. (2) 182(3), 787-853 (2015) · Zbl 1373.35307 · doi:10.4007/annals.2015.182.3.1
[7] Aretakis S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263(9), 2770-2831 (2012) · Zbl 1254.83021 · doi:10.1016/j.jfa.2012.08.015
[8] Aretakis S.: Horizon instability of extremal black holes. Adv. Theor. Math. Phys. 19(3), 507-530 (2015) · Zbl 1335.83013 · doi:10.4310/ATMP.2015.v19.n3.a1
[9] Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661-693 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[10] Bartnik R., McKinnon J.: Particlelike solutions of the Einstein-Yang-Mills equations. Phys. Rev. Lett. 61(2), 141 (1988) · doi:10.1103/PhysRevLett.61.141
[11] Benone, C., Crispino, L., Herdeiro, C., Radu, E.: Kerr-Newman scalar clouds. Phys. Rev. D 90, 104024-104034 (2014)
[12] Bizoń P., Wasserman A.: On existence of mini-boson stars. Commun. Math Phys. 215(2), 357-373 (2000) · Zbl 0982.83026 · doi:10.1007/s002200000307
[13] Brihaye Y., Herdeiro C., Radu E.: On existence of mini-boson stars. Phys. Lett. B 739, 1-7 (2000) · Zbl 1306.83041 · doi:10.1016/j.physletb.2014.10.019
[14] Brito, R., Cardoso, V., Pani, P.: Superradiance. Lecture Notes in Physics, vol. 906, no. 1. Springer (2015). doi:10.1007/978-3-319-19000-6
[15] Bunting, G.: Proof of the uniqueness conjecture for black holes. Ph.D. thesis, University of New England (1983)
[16] Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26(6), 331 (1971) · doi:10.1103/PhysRevLett.26.331
[17] Chodosh, O., Shlapentokh-Rothman, Y.: Stationary axisymmetric black holes with matter, preprint. arXiv:1510.08024 (2015) · Zbl 1464.83013
[18] Christodoulou D., Klainerman S.: Asymptotic properties of linear field equations in Minkowski space. Commun. Pure Appl. Math. 43(2), 137-199 (1990) · Zbl 0715.35076 · doi:10.1002/cpa.3160430202
[19] Christodoulou D., Klainerman S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton (1993) · Zbl 0827.53055
[20] Chruściel P., Costa J.: On uniqueness of stationary vacuum black holes. Astérisque 321, 195-265 (2008) · Zbl 1183.83059
[21] Chruściel, P., Costa, J., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relat. 15(7) (2012) · Zbl 1316.83023
[22] Costa, J.: On black hole uniqueness theorems. Ph.D. thesis, Oxford University (2010)
[23] Cunha P.V.P., Herdeiro C.A.R., Radu E., Rúnarsson H.F.: Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115, 211102 (2015) · Zbl 1347.83020 · doi:10.1103/PhysRevLett.115.211102
[24] Dafermos, M., Holzegel, G., Rodnianski, I.: A scattering theory construction of dynamical vacuum black holes. J. Differ. Geom. (to appear). arXiv:1306.5364 (2013) · Zbl 1200.83068
[25] Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: the cases \[{|a|\ll{M}} \]|a|≪M or axisymmetry, preprint. arXiv:1010.5132 (2010) · Zbl 1347.83002
[26] Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: XVIth International Congress on Mathematical Physics, pp. 421-432. World Sci. Publ., Hackensack (2010) · Zbl 1211.83019
[27] Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: Damour, T., et al. (ed.) Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity, pp. 132-189. World Scientific, Singapore. arXiv:1010.5137 (2011)
[28] Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: A scattering theory for the wave equation on Kerr black hole exteriors. Ann. Sci. éc. Norm. Supér. (to appear). arXiv:1412.8379 (2014) · Zbl 1347.83002
[29] Dafermos M., Rodnianski I., Shlapentokh-Rothman Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \[{|a| < M}\]|a|<M. Ann. Math. (2) 183(3), 787-913 (2016) · Zbl 1347.83002 · doi:10.4007/annals.2016.183.3.2
[30] Dain S.: Angular-momentum-mass inequality for axisymmetric black holes. Phys. Rev. Lett. 96, 101101 (2006) · Zbl 1107.83036 · doi:10.1103/PhysRevLett.96.101101
[31] Dain S.: Proof of the angular momentum-mass inequality for axisymmetric black holes. J. Differ. Geom. 79, 33-67 (2008) · Zbl 1157.83013 · doi:10.4310/jdg/1207834657
[32] Damour T., Deruelle N., Ruffini R.: On quantum resonances in stationary geometries. Lett. Al Nuovo Cimento 15(8), 257-262 (1976) · doi:10.1007/BF02725534
[33] Detweiler S.: Klein-Gordon equation and rotating black holes. Phys. Rev. D 22(10), 2323-2326 (1980) · doi:10.1103/PhysRevD.22.2323
[34] Dyatlov S.: Exponential energy decay for Kerr-de Sitter black holes beyond event horizons. Math. Res. Lett. 18(5), 1023-1035 (2011) · Zbl 1253.83020 · doi:10.4310/MRL.2011.v18.n5.a19
[35] Dyatlov S.: Quasi-normal modes and exponential energy decay for the Kerr-de Sitter black hole. Commun. Math. Phys. 306(1), 119-163 (2011) · Zbl 1223.83029 · doi:10.1007/s00220-011-1286-x
[36] Dyatlov S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335(3), 1445-1485 (2015) · Zbl 1315.83022 · doi:10.1007/s00220-014-2255-y
[37] Eells J., Lemaire L.: Selected Topics in Harmonic Maps, vol. 50. American Mathematical Society, Providence (1983) · Zbl 0515.58011 · doi:10.1090/cbms/050
[38] Finster F., Kamran N., Smoller J., Yau S.-T.: A rigorous treatment of energy extraction from a rotating black hole. Commun. Math. Phys. 287(3), 829-847 (2009) · Zbl 1200.83068 · doi:10.1007/s00220-009-0730-7
[39] Friedberg R., Lee T.-D., Pang Y.: Mini-soliton stars. Phys. Rev. D 35, 3640-3657 (1987) · doi:10.1103/PhysRevD.35.3640
[40] Friedberg R., Lee T.-D., Pang Y.: Scalar soliton stars and black holes. Phys. Rev. D 35, 3658-3677 (1987) · doi:10.1103/PhysRevD.35.3658
[41] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001) · Zbl 1042.35002
[42] Halkin, H.: Implicit functions and optimization problems without continuous differentiability of the data. SIAM J. Control 12, 229-236 (1974). Collection of articles dedicated to the memory of Lucien W. Neustadt. MR 0406524 (53 #10311) · Zbl 0241.90057
[43] Hawking S.: Black holes in general relativity. Commun. Math. Phys. 25, 152-166 (1972) · doi:10.1007/BF01877517
[44] Herdeiro, C., Radu, E.: Ergosurfaces for Kerr black holes with scalar hair. Phys. Rev. D 89, 124018-124024 (2014) · Zbl 1200.35302
[45] Herdeiro C., Radu E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101-221105 (2014) · doi:10.1103/PhysRevLett.112.221101
[46] Herdeiro, C. Radu, E., Rúnarsson, H.: Non-linear Q-clouds around Kerr black holes. Phys. Lett. B 739, 302-307 (2014) · Zbl 1306.83045
[47] Holzegel G., Smulevici J.: Decay properties of Klein-Gordon fields on Kerr-AdS spacetimes. Commun. Pure Appl. Math. 66(11), 1751-1802 (2013) · Zbl 1277.83023 · doi:10.1002/cpa.21470
[48] Holzegel G., Smulevici J.: Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes. Anal. PDE 7(5), 1057-1090 (2014) · Zbl 1300.83030 · doi:10.2140/apde.2014.7.1057
[49] Ionescu, A.D., Klainerman, S.: On the global stability of the wave-map equation in Kerr spaces with small angular momentum. Ann. PDE 1(1), Art. 1, 78 (2015) MR 3479066 · Zbl 1396.83006
[50] Israel W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776-1779 (1967) · doi:10.1103/PhysRev.164.1776
[51] Israel W.: Event horizions in static electrovac space-times. Commun. Math. Phys. 8, 245-260 (1968) · doi:10.1007/BF01645859
[52] Kaup D.: Klein-Gordon Geons. Phys. Rev. 172, 1331-1342 (1968) · doi:10.1103/PhysRev.172.1331
[53] Lee T.-D., Pang Y.: Stability of mini-boson stars. Nuclear Phys. B 315, 477-516 (1989) · doi:10.1016/0550-3213(89)90365-9
[54] Liebling, S., Palenzuela, C.: Dynamical boson stars. Living Rev. Relativity 15 (2012) · Zbl 1320.83006
[55] Mazur P.: Proof of uniqueness of the Kerr-Neuman black hole solution. J. Math. Phys. 15, 3173-3180 (1982) · Zbl 1141.83304 · doi:10.1088/0305-4470/15/10/021
[56] Mcleod J., Smoller J., Wasserman A., Yau S.-T.: Smooth static solutions of the Einstein/Yang-Mills equations. Commun. Math. Phys. 143(1), 115-147 (1991) · Zbl 0755.53061 · doi:10.1007/BF02100288
[57] Press W., Teukolsky S.: Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211-212 (1972) · doi:10.1038/238211a0
[58] Robinson D.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905-906 (1975) · doi:10.1103/PhysRevLett.34.905
[59] Ruffini R., Bonazzola S.: Systems of self-gravitating particles in general relativity. Phys. Rev. 187, 1767-1783 (1969) · doi:10.1103/PhysRev.187.1767
[60] Schoen R., Zhou X.: Convexity of reduced energy and mass angular momentum inequalities. Ann. Henri Poincaré 14(7), 1747-1773 (2013) · Zbl 1278.83011 · doi:10.1007/s00023-013-0240-1
[61] Schunk, F., Mielke, E.: Rotating boson starsIn: iRelativity and Scientific Computing: Computer Algebra, Numerics, Visualization, 152nd WE-Heraeus seminar on Relativity and Scientific computing, Bad Honnef, Germany, Septeber 18, vol. 22, pp. 138-151 (1995)
[62] Shlapentokh-Rothman Y.: Exponentially growing finite energy solutions for the Klein-Gordon equation on sub-extremal Kerr spacetimes. Commun. Math. Phys. 329(3), 859-891 (2014) · Zbl 1294.83062 · doi:10.1007/s00220-014-2033-x
[63] Shlapentokh-Rothman Y.: Quantitative mode stability for the wave equation on the Kerr spacetime. Ann. Henri Poincaré 16(1), 289-345 (2015) · Zbl 1308.83104 · doi:10.1007/s00023-014-0315-7
[64] Smoller J., Wasserman A., Yau S.-T.: Existence of black hole solutions for the Einstein-Yang/Mills equations. Commun. Math. Phys. 154(2), 377-401 (1993) · Zbl 0779.53056 · doi:10.1007/BF02097002
[65] Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2, 248-292 (2011) · Zbl 1209.83028
[66] Vasy A.: Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. 194(2), 381-513 (2013) · Zbl 1315.35015 · doi:10.1007/s00222-012-0446-8
[67] Wald R.: General Relativity. University of Chicago Press, Chicago (1984) · Zbl 0549.53001 · doi:10.7208/chicago/9780226870373.001.0001
[68] Weinstein G.: On rotating black holes in equilibrium in general relativity. Commun. Pure Appl. Math. 43(7), 903-948 (1990) · Zbl 0709.53063 · doi:10.1002/cpa.3160430705
[69] Weinstein G.: The stationary axisymmetric two-body problem in general relativity. Commun. Pure Appl. Math. 45(9), 1183-1203 (1992) · Zbl 0782.53088 · doi:10.1002/cpa.3160450907
[70] Wong W., Yu P.: Non-existence of multiple-black-hole solutions close to Kerr-Newman. Commun. Math. Phys. 325(3), 965-996 (2014) · Zbl 1285.83014 · doi:10.1007/s00220-013-1837-4
[71] Zeldovich Y.: Generating of waves by a rotating body. ZhETF 14, 180-181 (1971)
[72] Zourous T., Eardley D.: Instabilities of massive scalar perturbations of a rotating black hole. Ann. Phys. 118(1), 139-155 (1979) · doi:10.1016/0003-4916(79)90237-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.