×

Lagrange multipliers theorem and saddle point optimality criteria in mathematical programming. (English) Zbl 1102.90069

Summary: We prove a version of Lagrange multipliers theorem for nonsmooth functionals defined on normed spaces. Applying these results, we extend some results about saddle point optimality criteria in mathematical programming.

MSC:

90C46 Optimality conditions and duality in mathematical programming
Full Text: DOI

References:

[1] An, L. H.; Du, P. X.; Duc, D. M.; Tuoc, P. V., Lagrange multipliers for functions derivable along directions in a linear subspace, Proc. Amer. Math. Soc., 133, 595-604 (2005) · Zbl 1055.58006
[2] Bector, C. R.; Chandra, S.; Abha, A., On incomplete Lagrange function and saddle point optimality criteria in mathematical programming, J. Math. Anal. Appl., 251, 2-12 (2000) · Zbl 0964.90051
[3] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), Wiley-Interscience: Wiley-Interscience New York · Zbl 0727.90045
[4] Halkin, H., Implicit functions and optimization problems without continuous differentiability of the data, SIAM J. Control, 12, 229-236 (1974) · Zbl 0241.90057
[5] Ioffe, A. D., Necessary conditions in nonsmooth optimization, Math. Oper. Res., 9, 159-189 (1984) · Zbl 0548.90088
[6] Ioffe, A. D., A Lagrange multiplier rule with small convex-valued subdifferentials for nonsmooth problems of mathematical programming involving equality and nonfunctional constraints, Math. Programming, 58, 137-145 (1993) · Zbl 0782.90095
[7] Ioffe, A. D.; Tihomirov, V. M., Theory of Extremal Problems (1974), Nauka: Nauka Moscow, (in Russian) · Zbl 0407.90051
[8] Kruger, A. Y., Generalized differentials of nonsmooth functions and necessary conditions for an extremum, Siberian Math. J., 26, 370-379 (1985) · Zbl 0583.49016
[9] Kruger, A. Y.; Mordukhovich, B. S., Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR, 24, 684-687 (1980) · Zbl 0449.49015
[10] Michel, P.; Penot, J.-P., Calcul sous-différentiel pour des fonctions lipschitziennes et non lipschitziennes, C. R. Acad. Sci. Paris Sér. I Math., 12, 269-272 (1984) · Zbl 0567.49008
[11] Michel, P.; Penot, J.-P., A generalized derivative for calm and stable functions, Differential Integral Equations, 5, 433-454 (1992) · Zbl 0787.49007
[12] Mordukhovich, B. S., Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Soviet Math. Dokl., 22, 526-530 (1980) · Zbl 0491.49011
[13] Mordukhovich, B. S., On necessary conditions for an extremum in nonsmooth optimization, Soviet Math. Dokl., 32, 215-220 (1985) · Zbl 0586.49011
[14] Mordukhovich, B. S., An abstract extremal principle with applications to welfare economics, J. Math. Anal. Appl., 251, 187-216 (2000) · Zbl 1016.91078
[15] Mordukhovich, B. S., The extremal principle and its applications to optimization and economics, (Rubinov, A.; Glover, B., Optimization and Related Topics. Optimization and Related Topics, Appl. Optim., vol. 47 (2001), Kluwer Academic: Kluwer Academic Dordrecht), 343-369 · Zbl 1010.49014
[16] Mordukhovich, B. S.; Wang, B., Necessary suboptimality and optimality conditions via variational principles, SIAM J. Control Optim., 41, 623-640 (2002) · Zbl 1020.49018
[17] Rockafellar, R. T., Convex Analysis (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0202.14303
[18] Skrypnik, V., Methods for analysis of nonlinear elliptic boundary value problems (1994), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0822.35001
[19] Treiman, J. S., Shrinking generalized gradients, Nonlinear Anal., 12, 1429-1450 (1988) · Zbl 0674.49016
[20] Treiman, J. S., Lagrange multipliers for nonconvex generalized gradients with equality, inequality, and set constraints, SIAM J. Control Optim., 37, 1313-1329 (1999) · Zbl 0955.90126
[21] Ye, J. J., Multiplier rules under mixed assumptions of differentiability and Lipschitz continuity, SIAM J. Control Optim., 39, 1441-1460 (2001) · Zbl 0994.90138
[22] Ye, J. J., Nondifferentiable multiplier rules for optimization and bilevel optimization problems, SIAM J. Optim., 15, 1, 252-274 (2004) · Zbl 1077.90077
[23] Zeidler, E., Nonlinear Functional Analysis and Its Applications, III: Variational Methods and Optimization (1985), Springer: Springer Berlin · Zbl 0583.47051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.