×

Functional representations of semirings. (English. Russian original) Zbl 1290.16049

J. Math. Sci., New York 187, No. 2, 187-267 (2012); translation from Fundam. Prikl. Mat. 17, No. 3, 111-227 (2012).
In the paper, the author develops the theory of sheaf representations of semirings. The considered classes of semirings are those of symmetric semirings, reduced semirings, Gelfand semirings, regular semirings, Rickart semirings. After presenting the general theory of functional representations of semirings, the author gives the structural representations of semirings and semimodules, more precisely the representations of semimodules by sections of sheaves, representations of Rickart semirings, representations of Abelian-regular positive semirings and applies them to Gelfand semirings and Mulvey duality.

MSC:

16Y60 Semirings
16S60 Associative rings of functions, subdirect products, sheaves of rings
54B40 Presheaves and sheaves in general topology
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
Full Text: DOI

References:

[1] J. Ahsan and R. Latif, ”Representations of weakly regular semirings by sections in a presheaf,” Commun. Algebra, 21, No. 8, 2819–2835 (1993). · Zbl 0793.16039 · doi:10.1080/00927879308824707
[2] Andrunakievich V. A. and Ryabukhin Yu. M., Radicals of Algebras and Lattice Theory [in Russian], Nauka, Moscow (1979). · Zbl 0507.16009
[3] R. Arens and I. Kaplansky, ”Topological representations of algebras,” Trans. Am. Math. Soc., 63, 457–481 (1949). · Zbl 0032.00702 · doi:10.1090/S0002-9947-1948-0025453-6
[4] K. I. Beidar and A. V. Mikhalev, ”Orthogonal completeness and minimal prime ideals,” Tr. Semin. Petrovskogo, 10, 227–234 (1984) · Zbl 0569.16011
[5] K. I. Beidar and A. V. Mikhalev, ”Orthogonal completeness and algebraic systems,” Usp. Mat. Nauk, 40, No. 6, 79–115 (1985). · Zbl 0603.06003
[6] G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence (1967). · Zbl 0153.02501
[7] R. Bkouche, ”Couples spectraux et faisceaux associes. Applications aux anneaux de fonctions,” Bull. Soc. Math. Fr., 98, No. 3, 253–295 (1970). · Zbl 0201.37204
[8] I. Bocur and A. Deleanu, Introduction to the Theory of Categories and Functors, Wiley (1968). · Zbl 0197.29205
[9] F. Borceux, H. Simmons, G. Van den Bossche, ”A sheaf representation for modules with applications to Gelfand rings,” Proc. London Math. Soc., 48, No. 2, 230–246 (1984). · Zbl 0536.18003 · doi:10.1112/plms/s3-48.2.230
[10] G. Bredon, Sheaf Theory, McGraw-Hill, New York (1967).
[11] A. Brezuleanu and R. Diaconescu, ”Sur la duable de la categorie des treillis,” Rev. Roumaine Math. Pures Appl., 14, No. 3, 311–323 (1969) · Zbl 0183.30102
[12] B. Brown and N. H. McCoy, ”Some theorems on groups with applications to ring theory,” Trans. Am. Math. Soc., 69, 302–311 (1950). · Zbl 0039.26202
[13] W. D. Burgess and W. Stephenson, ”Pierce sheaves of non-commutative rings,” Commun. Algebra, 39, 512–526 (1976). · Zbl 0318.16005
[14] W. D. Burgess and W. Stephenson, ”An analogue of the Pierce sheaf for non-commutative rings,” Commun. Algebra, 6, No. 9, 863–886 (1978). · Zbl 0374.16017 · doi:10.1080/00927877808822272
[15] W. D. Burgess and W. Stephenson, ”Rings all of whose Pierce stalks are local,” Can. Math. Bull., 22, No. 2, 159–164 (1979). · Zbl 0411.16009 · doi:10.4153/CMB-1979-022-8
[16] A. B. Carson, ”Representation of regular rings of finite index,” J. Algebra, 39, No. 2, 512–526 (1976). · Zbl 0345.16016 · doi:10.1016/0021-8693(76)90050-8
[17] V. V. Chermnykh, ”Representations of positive semirings by sections,” Usp. Mat. Nauk, 47, No. 5, 193–194 (1992). · Zbl 0796.16039
[18] V. V. Chermnykh, ”Sheaf representations of semirings,” Usp. Mat. Nauk, 48, No. 5, 185–186 (1993). · Zbl 0823.16033
[19] V. V. Chermnykh, Sheaf Representations of Semirings Candidate’s Dissertation in Physics and Mathematics, Moscow Pedagogical State University, Moscow (1993). · Zbl 0823.16033
[20] V. V. Chermnykh, ”Lambek representation of semirings,” Vestn. Vyatsk. Gos. Ped. Univ., 1, 19–21 (1996). · Zbl 0899.16026
[21] V. V. Chermnykh, ”On completeness of sheaf representations of semirings,” Fundam. Prikl. Mat., 2, No. 1, 267–277 (1996). · Zbl 0899.16026
[22] V. V. Chermnykh, ”On the presheaf of endomorphism semirings,” Vestn. Vyatsk. Gos. Ped. Univ., 3, 33–36 (1997).
[23] V. V. Chermnykh, Semirings [in Russian], Izd. Vyatsk. Gos. Ped. Univ., Kirov (1997).
[24] V. V. Chermnykh, ”Analog of Stone–Weierstrass theorem for semirings,” Nauch. Vestn. Kirovsk. Fil. Mosk. Guman. Ehkon. Inst., 1, 193–196 (1998).
[25] V. V. Chermnykh, ”Lambek representation of semimodules,” Vestn. Vyatsk. Gos. Guman. Univ., 8, 107–109 (2003).
[26] V. V. Chermnykh, ”Gelfand semirings and their representations by sections,” Chebyshevskii Sb., 5, No. 2, 131–148 (2004). · Zbl 1139.16305
[27] V. V. Chermnykh, ”Mulvey duality for Gelfand semirings,” Vestn. Vyatsk. Gos. Guman. Univ., 10, 64–66 (2004).
[28] V. V. Chermnykh, ”On regular semirings with some conditions,” Vestn. Vyatsk. Gos. Guman. Univ., 11, 147–149 (2004).
[29] V. V. Chermnykh, ”On complete sheaf representation of semirings,” Vestn. Vyatsk. Gos. Guman. Univ. Inform., Mat., Yazyk, 3, 163–165 (2005).
[30] V. V. Chermnykh, ”Semirings of sections of sheaves,” Vestn. Vyatsk. Gos. Guman. Univ., 13, 151–158 (2005).
[31] V. V. Chermnykh, Functional Representations of Semirings and Semimodules, Doctoral Dissertation in Physics and Mathematics, IMM UrO RAN, Ekaterinburg (2007).
[32] V. V. Chermnykh, ”Reduced Rickart semirings and their functional representations,” Fundam. Prikl. Mat., 13, No. 2, 205–215 (2007). · Zbl 1178.16043
[33] V. V. Chermnykh, ”Representations of semimodules by sections of sheaves,” Fundam. Prikl. Mat., 13, No. 2, 195–204 (2007).
[34] V. V. Chermnykh, E. M. Vechtomov, and A. V. Mikhalev, ”Abelian regular positive semirings,” Tr. Semin. Petrovskogo, 20, 282–309 (1997). · Zbl 0984.16045
[35] R. Cignoli, ”The lattice of global sections of sheaves of chains over Boolean spaces,” Algebra Universalis, 8, No. 3, 357–373 (1978). · Zbl 0395.06006 · doi:10.1007/BF02485407
[36] S. D. Comer, ”Representation by algebras of sections over Boolean spaces,” Pacific J. Math., 38, 29–38 (1971). · Zbl 0219.08002 · doi:10.2140/pjm.1971.38.29
[37] W. H. Cornish, ”Normal lattices,” J. Aust. Math. Soc., 14, No. 2, 200–215 (1972). · Zbl 0247.06009 · doi:10.1017/S1446788700010041
[38] W. H. Cornish, ”0-ideals, congruences and sheaf representations of distributive lattices,” Rev. Roumaine Math. Pures Appl., 22, No. 8, 200–215 (1977). · Zbl 0382.06011
[39] J. Dauns and K. H. Hofmann, ”The representation of biregular rings by sheaves,” Math. Z., 91, No. 2, 103–123 (1966). · Zbl 0178.37003 · doi:10.1007/BF01110158
[40] J. Dauns and K. H. Hofmann, ”Representation of rings by sections,” Mem. Amer. Math. Soc., 83, 1–180 (1968). · Zbl 0174.05703
[41] B. A. Davey, ”Sheaf spaces and sheaves of universal algebras,” Math. Z., 134, No. 4, 275–290 (1973). · doi:10.1007/BF01214692
[42] R. Dedekind, ” Uber die Theorie ganzen algebraischen Zahlen, Suppl. XI to P. G. Lejeune Dirichlet, Vorlesungen ”uber Zahlentheorie, Vieweg und Sohn, Braunschweig (1894). · Zbl 0124.02205
[43] R. Engelking, General Topology, PWN, Warszawa (1977).
[44] A. Filipoiu, ”Compact sheaves of lattices and normal lattices,” Math. Japon., 36, No. 2, 381–386 (1991). · Zbl 0729.06007
[45] M. P. Fourman, C. J. Mulvey, and D. S. Scott, eds., Applications of Sheaves. Proc. Res. Symp. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham 1977, Lect. Notes Math., Vol. 753, Springer, Berlin (1979). · Zbl 0407.00001
[46] I. M. Gelfand, ”On normed rings,” Dokl. Akad. Nauk SSSR, 22, No. 1, 430–432 (1939). · Zbl 0021.29403
[47] G. Georgescu, ”Pierce representations of distributive lattices,” Kobe J. Math., 10, No. 1, 1–11 (1993). · Zbl 0801.06018
[48] G. Georgescu and J. Voiculescu, ”Isomorphic sheaf representations of normal lattices,” J. Pure Appl. Algebra, 45, No. 3, 213–223 (1987). · Zbl 0646.06009 · doi:10.1016/0022-4049(87)90071-5
[49] K. Glazek, A Short Guide Through the Literature on Semirings, Preprint No. 39, University of Wroclaw, Mathematical Institute, Wroclaw (1985).
[50] K. Glazek, A Short Guide to the Literature on Semirings and Their Applications in Mathematics and Computer Science (2000).
[51] R. Godement, Topologie Alg’ebrique et Th’eorie des Faisceaux, Actualit’es scientifiques et industrielles, Vol. 1252, Publ. Inst. Math. Univ. Strasbourg, 13, Hermann, Paris (1958).
[52] J. S. Golan, Localization of Noncommutative Rings, Marcel Dekker, New York (1975). · Zbl 0302.16002
[53] J. S. Golan, Structure Sheaves over a Noncommutative Ring, Lect. Notes Pure Appl. Math., Vol. 56, Marcel Dekker, New York (1980). · Zbl 0436.16021
[54] J. S. Golan, ”Two sheaf constructions for noncommutative rings,” Houston J. Math., 6, No. 1, 59–66 (1980). · Zbl 0447.16021
[55] J. S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, Pitman Monogr. Surv. Pure Appl. Math., Vol. 54, Pitman (1991).
[56] J. S. Golan, Semirings and Their Applications, Kluwer Academic, Dordrecht (1999). · Zbl 0947.16034
[57] R. Goldblatt, Topoi: Categorial Analysis of Logic, North-Holland, Amsterdam (1979). · Zbl 0434.03050
[58] G. Gratzer, General Lattice Theory, Akademie, Berlin (1978).
[59] A. Grothendieck, ”Sur quelques points d’algebre homologique,” Tôhoku Math. J., 9, 119–221 (1957). · Zbl 0118.26104
[60] A. Grothendieck and J. Dieudonne, Éléments de Géométrie Algébrique, Vol. 1, Publ. Math., Vol. 4, Inst. Hautes Études Sci., Paris (1960).
[61] U. Hebisch and H. J. Weinert, Semirings, Algebraic Theory Appl. Comp. Sci., World Scientific, Singapore (1998). · Zbl 0934.16046
[62] D. Hilbert, ”Über den Zahlbergriff,” Jahresber. Deutsch. Math. Verein, 8, 180–184 (1899).
[63] K. H. Hofmann, ”Representations of algebras by continuous sections,” Bull. Am. Math. Soc., 78, No. 3, 291–373 (1972). · Zbl 0237.16018 · doi:10.1090/S0002-9904-1972-12899-4
[64] E. V. Huntington, ”Complete sets of postulates for the theory of positive integral and positive rational numbers,” Trans. Am. Math. Soc., 3, 280–284 (1902). · JFM 33.0298.01 · doi:10.1090/S0002-9947-1902-1500599-0
[65] P. Johnstone, Topos Theory, London Math. Soc. Monogr., Vol. 10, Akademie Press (1977).
[66] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Springer, Berlin (1990). · Zbl 0709.18001
[67] K. Keimel, ”Darstellung von Halbgruppen und universellen Algebren durch Schnitte in Garben; biregulare Halbgruppen,” Math. Nachr., 45, 81–96 (1970). · Zbl 0181.02401 · doi:10.1002/mana.19700450105
[68] K. Keimel, ”The representation of lattice-ordered groups and rings by sections in sheaves,” in: Lectures Appl. Sheaves Ring Theory, Tulane Univ., Ring Operator Theory, Year 1970-1971, 3, Lect. Notes Math., Vol. 248, Springer, Berlin (1971), pp. 1–98.
[69] D. Kelly, General Topology, Van Nostrand, Princeton (1955).
[70] J. F. Kennison, ”Integral domain type representations in sheaves and other topoi,” Math. Z., 151, No. 1, 35–56 (1976). · doi:10.1007/BF01174724
[71] K. Koh, ”On functional representations of ring without nilpotent elements,” Can. Math. Bull., 14, No. 3, 349–352 (1971). · Zbl 0217.34004 · doi:10.4153/CMB-1971-063-7
[72] K. Koh, ”On a representation strongly harmonic ring by sheaves,” Pacific J. Math., 41, No. 2, 459–468 (1972). · doi:10.2140/pjm.1972.41.459
[73] P. Kohn, Universal Algebra, Harper & Row, New York (1965).
[74] J. Lambek, Lectures on Rings and Modules, Waltham, Massachusets (1966).
[75] J. Lambek, ”On representation of modules by sheaves of factor modules,” Can. Math. Bull., 14, No. 3, 359–368 (1971). · Zbl 0217.34005 · doi:10.4153/CMB-1971-065-1
[76] V. A. Lyubetskii, ”Valuations and sheaves. On some questions of nonstandard analysis,” Usp. Mat. Nauk, 44, No. 4, 99–153 (1989).
[77] F. S. Macaulay, Algebraic Theory of Modular Systems, Cambridge Univ. Press, Cambridge (1916). · JFM 46.0167.01
[78] S. MacLane, ”A history of abstract algebra: origin, rise and decline of a movement,” in: Amer. Math. Heritage: Algebra and Applied Mathematics, Texas Univ. (1981), pp. 11–35.
[79] V. P. Maslov and V. N. Kolokoltsov, Idempotent Analysis and Its Applications, Kluwer Academic, Dordrecht (1997). · Zbl 0941.93001
[80] C. J. Mulvey, ”Intuitionistic algebra and representations of rings,” Mem. Amer. Math. Soc., 148, 3–57 (1974). · Zbl 0274.18012
[81] C. J. Mulvey, ”Compact ringed spaces,” J. Algebra, 52, No. 2, 411–436 (1978). · Zbl 0418.18009 · doi:10.1016/0021-8693(78)90248-X
[82] C. J. Mulvey, ”A generalization of Gelfand duality,” J. Algebra, 56, No. 2, 499–505 (1979). · Zbl 0498.16035 · doi:10.1016/0021-8693(79)90352-1
[83] C. J. Mulvey, ”Representations of rings and modules,” in: M. P. Fourman, C. J. Mulvey, and D. S. Scott, eds., Applications of Sheaves, Proc. Res. Symp. Appl. Sheaf Theory to Logic, Algebra and Anal., Univ. Durham, Durham 1977, Lect. Notes Math., Vol. 753, Springer, Berlin (1979), pp. 542–585.
[84] R. S. Pierce, ”Modules over commutative regular rings,” Mem. Amer. Math. Soc., 70, 1–112 (1967). · Zbl 0152.02601
[85] Recent Advances in the Representation Theory of Rings and $ {\(\backslash\)mathbb{C}\^*} $ -Algebras by Continuous Sections, Mem. Amer. Math. Soc., Vol. 148, Amer. Math. Soc. (1974).
[86] I. B. Rumbos, ”A structure sheaf for semiprime rings,” Commun. Algebra, 17, No. 11, 2773–2794 (1989). · Zbl 0686.16019 · doi:10.1080/00927878908823874
[87] J. P. Serre, ”Faisceaux algébriques cohérents,” Ann. Math. (2), 61, 197–278 (1955). · Zbl 0067.16201 · doi:10.2307/1969915
[88] H. Simmons, ”Reticulated rings,” J. Algebra, 64, No. 1, 169–192 (1980). · Zbl 0462.13002 · doi:10.1016/0021-8693(80)90118-0
[89] H. Simmons, ”Sheaf representations of strongly harmonic rings,” Proc. Roy. Soc. Edinburgh. Sect. A, 99, No. 3-4, 249–268 (1985). · Zbl 0563.18007 · doi:10.1017/S030821050001427X
[90] H. Simmons, ”Compact representations–the lattice theory of compact ringed spaces,” J. Algebra, 126, No. 2, 493–531 (1989). · Zbl 0708.18006 · doi:10.1016/0021-8693(89)90315-3
[91] L. A. Skornyakov, ed., General Algebra, Vols. 1 and 2, Nauka, Moscow (1990, 1991). · Zbl 0751.00002
[92] O. V. Starostina, ”Structure of Abelian regular positive semirings,” Chebyshevskii Sb., 6, No. 4 (16), 142–151 (2005). · Zbl 1262.16051
[93] M. Stone, ”Applications of the theory of Boolean rings to general topology,” Trans. Am. Math. Soc., 41, No. 3, 375–481 (1937). · Zbl 0017.13502 · doi:10.1090/S0002-9947-1937-1501905-7
[94] S. Teleman, ”Representation par faisceaux des modules sur les anneaux harmoniques,” C. R. Acad. Sci. Paris, 269, No. 17, A753–A756 (1969). · Zbl 0185.09701
[95] D. V. Tyukavkin, Pearce Sheaves for Rings with Involution, Moscow State University, Moscow (1982), deposited at VINITI No. 3446-82 (1982).
[96] H. S. Vandiver, ”Note on a simple type of algebras in which cancellation law of addition does not hold,” Bull. Am. Math. Soc., 40, 914–920 (1934). · Zbl 0010.38804 · doi:10.1090/S0002-9904-1934-06003-8
[97] V. I. Varankina, ”Maximal ideals in semirings of continuous functions,” Fundam. Prikl. Mat., 1, No. 4, 923–937 (1995). · Zbl 0870.54016
[98] V. I. Varankina, E. M. Vechtomov, and I. A. Semenova, ”Semirings of continuous nonnegative functions: divisibility, ideals, congruences,” Fundam. Prikl. Mat., 4, No. 2, 493–510 (1998). · Zbl 0959.46017
[99] E. M. Vechtomov, ”Virginal ideals of rings and Bkouche theorem,” Abel. Groups Modules, No. 8, 54–64 (1989).
[100] E. M. Vechtomov, Rings of Continuous Functions on Topological Spaces [in Russian], Moscow Pedagogical States Univ., Moscow (1992). · Zbl 0836.54011
[101] E. M. Vechtomov, ”Annihilator characterizations of Boolean rings and Boolean lattices,” Mat. Zametki, 53, No. 2, 15–24 (1993). · Zbl 0805.06013
[102] E. M. Vechtomov, Functional Representations of Rings [in Russian], Moscow Pedagogical States Univ., Moscow (1993). · Zbl 0856.16030
[103] E. M. Vechtomov, Rings of Continuous Functions with Values in Topological Division Ring, Doctoral Dissertation in Physics and Mathematics, Moscow State Univ. (1993). · Zbl 0822.54011
[104] E. M. Vechtomov, Rings and Sheaves, J. Math. Sci., 74, No. 1, 749–798 (1995). · Zbl 0880.46021 · doi:10.1007/BF02362842
[105] E. M. Vechtomov, ”Distributive lattices which have chain functional representation,” Fundam. Prikl. Mat., 2, No. 1, 93–102 (1996). · Zbl 0901.06010
[106] E. M. Vechtomov, Introduction to Semirings [in Russian], Vyatka State Pedagogical Univ., Kirov (2000).
[107] E. M. Vechtomov and A. V. Cheraneva, ”Semifields and their properties,” Fundam. Prikl. Mat., 14, No. 5, 3–54 (2008). · Zbl 1288.12004
[108] E. M. Vechtomov and V. V. Chermnykh, ”Symmetric conditions in rigs and semirings,” Vestn. Vyatsk. Gos. Ped. Univ., 1, 6–8 (1996).
[109] H. Werner, ”Sheaf constructions in universal algebra and model theory,” in: Universal Algebra and Applications. Pap. Stefan Banach Inst. Math. Cent. Semestr. Febr. 15–June 9, 1978, Warsaw (1982), pp. 133–179.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.