×

A new Mertens decomposition of \(\mathscr{Y}^{g , \xi} \)-submartingale systems. Application to BSDEs with weak constraints at stopping times. (English) Zbl 1521.93203

Summary: We first introduce the concept of \(\mathscr{Y}^{g , \xi} \)-submartingale systems, where the nonlinear operator \(\mathscr{Y}^{g , \xi}\) corresponds to the first component of the solution of a reflected BSDE with generator \(g\) and lower obstacle \(\xi \). We first show that, in the case of a left-limited right-continuous obstacle, any \(\mathscr{Y}^{g , \xi} \)-submartingale system can be aggregated by a process which is right-lower semicontinuous. We then prove a Mertens decomposition, by using an original approach which does not make use of the standard penalization technique. These results are in particular useful for the treatment of control/stopping game problems and, to the best of our knowledge, they are completely new in the literature. As an application, we introduce a new class of backward stochastic differential equations (in short BSDEs) with weak constraints at stopping times, which are related to the partial hedging of American options. We study the wellposedness of such equations and, using the \(\mathscr{Y}^{g , \xi} \)-Mertens decomposition, we show that the family of minimal time-\(t\)-values \(Y_t\), with \(( Y , Z )\) a supersolution of the BSDE with weak constraints, admits a representation in terms of a reflected backward stochastic differential equation.

MSC:

93E20 Optimal stochastic control
60H30 Applications of stochastic analysis (to PDEs, etc.)
60G46 Martingales and classical analysis
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
91A15 Stochastic games, stochastic differential games

References:

[1] Bouchard, B.; Bouveret, G.; Chassagneux, J.-F., A backward dual representation for the quantile hedging of Bermudan options, SIAM J. Financial Math., 7, 1, 215-235 (2016) · Zbl 1339.91114
[2] Bouchard, B.; Elie, R.; Moreau, L., Regularity of BSDEs with a convex constraint on the gains-process, Bernoulli, 24, 3, 1613-1635 (2018) · Zbl 1426.60068
[3] Bouchard, B.; Elie, R.; Réveillac, A., BSDES with weak terminal condition, Ann. Probab., 43, 2, 572-604 (2015) · Zbl 1321.60123
[4] Bouchard, B.; Elie, R.; Touzi, N., Stochastic target problems with controlled loss, SIAM J. Control Optim., 48, 5, 3123-3150 (2009) · Zbl 1202.49028
[5] Bouchard, B.; Possamaï, D.; Tan, X., A general Doob-Meyer-Mertens decomposition for g-supermartingale systems, Electron. J. Probab., 21 (2016) · Zbl 1343.60050
[6] Briand, P.; Elie, R.; Hu, Y., BSDEs with mean reflection, Ann. Appl. Probab., 28, 1, 482-510 (2018) · Zbl 1391.60133
[7] Cvitanić, J.; Karatzas, I., Backward stochastic differential equations with reflection and dynkin games, Ann. Probab., 24, 4, 2024-2056 (1996) · Zbl 0876.60031
[8] Dellacherie, C.; Lenglart, E., Sur des problèmes de régularisation, de recollement et d’interpolation en théorie des processus, (Seminar on Probability, XVI. Seminar on Probability, XVI, Lecture Notes in Math., vol. 920 (1982), Springer, Berlin), 298-313 · Zbl 0538.60035
[9] Dellacherie, C.; Meyer, P., Probabilités et potentiel. Chap V-VIII, Herman, Paris (1980) · Zbl 0464.60001
[10] Drapeau, S.; Heyne, G.; Kupper, M., Minimal supersolutions of convex BSDEs, Ann. Probab., 41, 6, 3973-4001 (2013) · Zbl 1284.60116
[11] Dumitrescu, R., BSDEs with nonlinear weak terminal condition (2016)
[12] Dumitrescu, R.; Quenez, M.-C.; Sulem, A., A weak dynamic programming principle for combined optimal stopping/stochastic control with \(\mathcal{E}^f\)-expectations, SIAM J. Control Optim., 54, 4, 2090-2115 (2016) · Zbl 1343.93097
[13] Grigorova, M.; Imkeller, P.; Offen, E.; Ouknine, Y.; Quenez, M.-C., Reflected BSDEs when the obstacle is not right-continuous and optimal stopping, Ann. Appl. Probab., 27, 5, 3153-3188 (2017) · Zbl 1379.60045
[14] Grigorova, M.; Imkeller, P.; Ouknine, Y.; Quenez, M.-C., Doubly reflected BSDEs and Ef-Dynkin games: beyond the right-continuous case, Electron. J. Probab., 23, 122, 1-38 (2018)
[15] Heyne, G.; Kupper, M.; Mainberger, C., Minimal supersolutions of BSDEs with lower semicontinuous generators, Annal. L’Inst. Henri PoincarÉ, Probab. Stat., 50, 2, 524-538 (2014) · Zbl 1296.60173
[16] Klimsiak, T., Reflected BSDEs on filtered probability spaces, Stochastic Process. Appl., 125, 11, 4204-4241 (2015) · Zbl 1323.60079
[17] Matoussi, A.; Possamaï, D.; Zhou, C., Corrigendum for Second-order reflected backward stochastic differential equations and Second-order BSDEs with general reflection and game options under uncertainty, Ann. Appl. Probab., 31, 3, 1505-1522 (2021) · Zbl 1489.60103
[18] Mertens, J., Théorie des processus stochastiques généraux applications aux surmartingales, Z. Wahrscheinlichkeitstheorie Verwandte Gebiete, 22, 45-68 (1972) · Zbl 0236.60033
[19] Neveu, J., (Discrete-Parameter Martingales. Discrete-Parameter Martingales, Mathematical Studies (1975), North-Holland) · Zbl 0345.60026
[20] Peng, S., Backward SDE and related \(g\)-expectation, (Backward Stochastic Differential Equations (Paris, 1995-1996). Backward Stochastic Differential Equations (Paris, 1995-1996), Pitman Res. Notes Math. Ser., vol. 364 (1997), Longman, Harlow), 141-159 · Zbl 0892.60066
[21] Peng, S., Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-MeyerF’s type., Probab. Theory Related Fields, 113, 4, 473-499 (1999) · Zbl 0953.60059
[22] Peng, S.; Xu, M., Reflected BSDE with a constraint and its applications in an incomplete market, Bernoulli, 16, 3, 614-640 (2010) · Zbl 1284.60120
[23] Popier, A.; Zhou, C., Second order BSDE under monotonicity condition and liquidation problem under uncertainty, Ann. Appl. Probab., 29, 3, 1685-1739 (2019) · Zbl 1451.60060
[24] Soner, H. M.; Touzi, N.; Zhang, J., Well-posedness of second order backward SDEs, Probab. Theory Related Fields, 153, 1-2, 149-190 (2012) · Zbl 1252.60056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.