×

On the proof of Pontryagin’s maximum principle by means of needle variations. (English. Russian original) Zbl 1352.49021

J. Math. Sci., New York 218, No. 5, 581-598 (2016); translation from Fundam. Prikl. Mat. 19, No. 5, 49-73 (2014).
Summary: We propose a proof of the maximum principle for the general Pontryagin type optimal control problem, based on packets of needle variations. The optimal control problem is first reduced to a family of smooth finite-dimensional problems, the arguments of which are the widths of the needles in each packet, then, for each of these problems, the standard Lagrange multipliers rule is applied, and finally, the obtained family of necessary conditions is “compressed” in one universal optimality condition by using the concept of centered family of compacta.

MSC:

49K15 Optimality conditions for problems involving ordinary differential equations

References:

[1] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979). · Zbl 0516.49002
[2] V. G. Boltyansky, Mathematical Methods of Optimal Control [in Russian], Moscow, Nauka (1969). · Zbl 0235.49023
[3] D. A. Carlson, “An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation,” J. Optim. Theory Appl., 54, No. 1, 43-61 (1987). · doi:10.1007/BF00940404
[4] A. V. Dmitruk, “Maximum principle for a general optimal control problem with state and regular mixed constraints,” Comput. Math. Modeling, 4, No. 4, 364-377 (1993). · Zbl 1331.49025
[5] A. V. Dmitruk, “On the development of Pontryagin’s maximum principle in the works of A. Ya. Dubovitskii and A. A. Milyutin,” Control Cybern., 38, No. 4a, 923-958 (2009). · Zbl 1236.49003
[6] A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems in the presence of restrictions,” USSR Comput. Math. Math. Phys., 5, No. 3, 1-80 (1965). · Zbl 0158.33504
[7] A. Ya. Dubovitskii and A. A. Milyutin, “Translations of the Euler equations,” USSR Comput. Math. Math. Phys., 9, No. 6, 1263-1284 (1969). · Zbl 0197.08801
[8] R. V. Gamkrelidze, “Optimal sliding states,” Sov. Math. Dokl., 3, 559-562 (1962). · Zbl 0131.32402
[9] I. V. Girsanov, Lectures on the Theory of Extremal Problems [in Russian], Izd. Mosk. Univ., Moscow (1970).
[10] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).
[11] A. Korytowski, “A simple proof of the maximum principle with endpoint constraints,” Control Cybern., 43, No. 1, 5-14 (2014). · Zbl 1318.49032
[12] L. Lichtenstein, “Eine elementare Bemerkung zur reellen Analysis,” Math. Z., 30, No. 1, 794-795 (1929). · JFM 55.0134.04 · doi:10.1007/BF01187802
[13] G. G. Magaril-Il’yaev, “The Pontryagin maximum principle: statement and proof,” Dokl. Math., 85, No. 1, 14-17 (2012). · Zbl 1244.49035 · doi:10.1134/S1064562412010048
[14] K. Makowsky and L. W. Neustadt, “Maximum principle for problems with mixed constraints,” SIAM J. Control Optim., 12, No. 2, 184-228 (1974). · Zbl 0241.49007 · doi:10.1137/0312016
[15] B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, Oxford (1966). · Zbl 0177.17902
[16] A. S. Matveev and V. A. Yakubovich, Abstract Theory of Optimal Control [in Russian], Izd. Sankt-Peterburg. Univ., Sankt-Petersburg (1994). · Zbl 0886.49020
[17] P. Michel, “Une demonstration el´ementaire du principe du maximum de Pontryagin,” Bull. Math. Econom., No. 14, 9-23 (1977).
[18] A. A. Milyutin, “General schemes of necessary conditions for extrema and optimal control problems,” Russ. Math. Surv, 25, No. 5, 109-115 (1970). · Zbl 0235.49023 · doi:10.1070/RM1970v025n05ABEH003799
[19] A. A. Milyutin, A. V. Dmitruk, and N. P. Osmolovskii, Maximum Principle in Optimal Control [in Russian], Izd. Mekh.-Mat. Fak. MGU, Moscow (2004).
[20] L. S. Pontryagin, V. G. Boltyansky, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Moscow, Nauka (1961). · Zbl 0102.31901
[21] V. M. Tikhomirov and N. P. Osmolovskii, eds., Optimal control [in Russian], MCCME, Moscow (2008).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.