×

Kinetic theory of chemical reactions on crystal surfaces. (English) Zbl 07464402

Summary: A kinetic theory describing chemical reactions on crystal surfaces is introduced. Kinetic equations are used to model physisorbed-gas particles and chemisorbed particles interacting with fixed potentials and colliding with phonons. The phonons are assumed to be at equilibrium and the physisorbed-gas and chemisorbed species equations are coupled to similar kinetic equations describing crystal atoms on the surface. An arbitrary number of gaseous species, surface species and heterogeneous chemical reactions are considered and the species may be polyatomic. A kinetic entropy is introduced for the coupled system and the H theorem is established. Using a fluid scaling and a Chapman-Enskog method, fluid boundary conditions are derived from the kinetic model and involve complex surface chemistry as well as surface tangential multicomponent diffusion.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

CHEMKIN; ReaxFF
Full Text: DOI

References:

[1] Armenise, I.; Capitelli, M.; Gorse, C.; Cacciatore, M.; Rutigliano, M., Nonequilibrium vibrational kinetics of an \(O{}_2/O\) mixture hitting a catalytic surface, J. Space. Rockets, 37, 318-323 (2000)
[2] Bruno, D.; Cacciatore, M.; Longo, S.; Rutigliano, M., Gas-surface scattering models for particle fluid dynamics: a comparison between analytical approximate models and molecular dynamics calculations, Chem. Phys. Lett., 320, 245-254 (2000)
[3] Kustova, E.; Nagnibeda, Z.; Armenise, I.; Capitelli, M., Nonequilibrium kinetics and heat transfer in \(O{}_2/O\) mixtures near catalytic surfaces, J. Thermo. Heat Transfer, 16, 238-244 (2002)
[4] Kustova, E.; Nagnibeda, Z.; Shevelev, Y.; Syzranova, N., Comparison of different models for non-equilibrium CO \({}_2\) flows in a shock layer near a blunt body, Shock Wave, 21, 273-285 (2011)
[5] Deutschmann, O.; Riedel, U.; Warnatz, J., Modeling of nitrogen and oxygen recombination on partial catalytic surfaces, ASME. J. Heat Transfer, 117, 495-501 (1995)
[6] Turchi, A.; Congedo, P.; Magin, T. E., Thermochemical ablation modeling forward uncertainty analysis—Part I: Numerical methods and effect of model parameters, Int. J. Therm. Sci., 118, 497-509 (2017)
[7] Giovangigli, V.; Candel, S., Extinction limits of catalyzed stagnation point flow flames, Comb. Sci. Tech., 48, 1-30 (1986)
[8] Deutschmann, O.; Schmidt, R.; Behrendt, F.; Warnatz, J., Numerical modeling of catalytic combustion, Proc. Comb. Ints., 26, 1747-1754 (1996)
[9] Sone, Y., Molecular Gas Dynamics: Theory, Techniques, and Applications (2007), Birkhaüser: Birkhaüser Boston · Zbl 1144.76001
[10] Aoki, K.; Sone, Y.; Yamada, T., Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory, Phys. Fluids A, 2, 1867-1878 (1990) · Zbl 0721.76085
[11] Frezzotti, A.; Barbante, P., Kinetic theory aspects of non-equilibrium liquid-vapor flows, Mech. Eng. Rev., 4, 16-00540 (2017)
[12] Ern, A.; Giovangigli, V.; Smooke, M., Numerical study of a three-dimensional chemical vapor deposition reactor with detailed chemistry, J. Comput. Phys., 126, 21-39 (1996) · Zbl 0853.76091
[13] Orlac’h, J.-M.; Giovangigli, V.; Novikova, T.; Roca i. Cabarrocas, P., Hybrid kinetic/fluid modeling of silicon nanoparticles dynamics in silane plasma discharges, Rarefied Gas Dynamics Conference, AIP Conf. Proc., 1786, Article 130004 pp. (2016)
[14] Succi, S.; Smith, G.; Kaxiras, E., Lattice Boltzmann simulation of reactive microflows over catalytic surfaces, J. Stat. Phys., 107, 343-366 (2002) · Zbl 1007.82006
[15] Reuter, K.; Scheffler, M., First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Application to the CO oxidation at RuO \({}_2(110)\), Phys. Rev. B, 73, Article 045433 pp. (2006)
[16] Groß, A., Theoretical Surface Science, a Microscopic Perspective (2009), Springer Verlag: Springer Verlag Berlin
[17] Coltrin, M. E.; Kee, R. J.; Rupley, F. M., Surface chemkin: A general formalism and software for analyzing heterogeneous chemical kinetic at a gas-surface interface, Chem. Kin., 23, 1111-1128 (1991)
[18] Kee, R. J.; Coltrin, M. E.; Glarborg, P., Chemically Reacting Flow (2003), Wiley: Wiley Hoboken
[19] Deutschmann, O., Modeling the interaction between catalytic surfaces and gas-phase, Catal. Lett., 145, 272-289 (2015)
[20] Cercignani, C., The Boltzmann Equation and Its Applications (2008), Springer Verlag: Springer Verlag New York
[21] Epstein, M., A model of the wall boundary conditions in kinetic theory, AIAA J., 5, 1797-1800 (1967)
[22] Cercignani, C.; Lampis, M., Kinetic models for gas-surface interaction, Transp. Theor. Stat. Phys., 1, 101-114 (1971) · Zbl 0288.76041
[23] Kogan, M. N.; Makashev, N. K., Boundary conditions for flows with chemical reactions occuring on a surface, Fluid Dyn., 7, 116-125 (1972) · Zbl 0228.76042
[24] Cowling, T. G., On the cercignani-lampis formula for gas-surface interactions, J. Phys. D, 7, 781-785 (1974)
[25] Lord, R. G., Some extensions to the cercignani-lampis gas-surface scattering kernel, Phys. Fluids A, 3, 706-710 (1991) · Zbl 0735.76059
[26] Lord, R. G., Some further extensions to the Cercignani-Lampis gas-surface interaction model, Phys. Fluids A, 7, 1159-1161 (1995) · Zbl 1023.76579
[27] Cercignani, C.; Lampis, M., A new model for the boundary conditions of the Boltzmann equation, Mech. Res. Comm., 26, 451-456 (1999) · Zbl 0978.76080
[28] Frezzotti, A., Boundary conditions at the vapor-liquid interface, Phys. Fluids, 23, Article 030609 pp. (2011) · Zbl 1308.76282
[29] Struchtrup, H., Maxwell boundary condition and velocity dependent accommodation coefficient, Phys. Fluids, 25, Article 112001 pp. (2013)
[30] Mohammadzadeh, A.; Rana, A.; Struchtrup, H., DSMC and R13 modeling of the adiabatic surface, Int. J. Therm. Sci., 101, 9-23 (2016)
[31] Wu, L.; Struchtrup, H., Assessment and development of the gas kinetic boundary condition for the Boltzmann equation, J. Fluid Mech., 823, 511-537 (2017) · Zbl 1374.76200
[32] Brull, S.; Charrier, P.; Mieussens, L., Gas-surface interaction and boundary conditions for the Boltzmann equation, Kin. Rel. Models, 7, 219-251 (2014) · Zbl 1304.82062
[33] Borman, V. D.; S. Yu. Krylov, P.; Prosyanov, A. V.; Kharitonov, A. M., Theory of transport processes in a nonequilibrium gas-solid system, Sov. Phys.—JETP, 63, 43-56 (1986)
[34] Borman, V. D.; S. Yu. Krylov, P.; Prosyanov, A. V., Theory of nonequilibrium phenomena at a gas-solid interface, Sov. Phys.—JETP, 67, 2110-2121 (1988)
[35] Prosyanov, A. V.; Borman, V. D.; S. Yu. Krylov, A. V.; Nikolaev, B. I., New mechanism of mass transfer in a gas-adsorbate-solid system, Phys. Lett. A, 140, 55-58 (1989)
[36] Beenakker, J. J.M.; Borman, V. D.; S. Yu Krylov, A. V., Molecular transport in the nanometer regime, Phys. Rev. Lett., 72, 514 (1994)
[37] Bogdanov, A. V.; Dubrovskiy, G. V.; Krutikov, M. P.; Kulginov, D. V.; Strelchenya, V. M., Interaction of Gases with Surfaces (1995), Springer Verlag: Springer Verlag Berlin
[38] Beenakker, J. J.M.; Krylov, S. Yu., One-dimensional surface diffusion : Density dependence in a smooth potential, J. Chem. Phys., 107, 4015-4023 (1997)
[39] S. Yu. Krylov, J. J.M.; Prosyanov, A. V.; Beenakker, J. J.M., One-dimensional surface diffusion II: Density dependence in a corrugated potential, J. Chem. Phys., 107, 6970-6979 (1997)
[40] Pankov, A. Yu.; Borman, V. D.; Krylov, S. Yu., Kinetic theory of rotating molecules interacting with a solid surface, J. Exp. Theor. Phys., 86, 737-744 (1998)
[41] Frezzotti, A.; Gibelli, L., A kinetic model for fluid-wall interaction, Proc. IMechE, 22, 787-795 (2007)
[42] Frezzotti, A.; Nedea, S. V.; Spijker, A. J.; Gibelli, L., Comparison of molecular dynamics and kinetic modeling of gas-surface interactions, Rarefied Gas Dynamics Conference, AIP Conf. Proc., 1084, 635-640 (2008)
[43] Aoki, K.; Charrier, P.; Degond, P., A hierarchy of models related to nanoflows and surface diffusion, Kin. Rel. Models, 4, 53-85 (2011) · Zbl 1218.82029
[44] Brull, S.; Charrier, P.; Mieussens, L., Nanoscale roughness effect on maxwell-like boundary conditions for the Boltzmann equation, Phys. Fluids, 28, Article 082004 pp. (2016)
[45] Aoki, K.; Giovangigli, V.; Hattori, M., A kinetic model of adsorption on solid surfaces, Rarefied Gas Dynamics Conference, AIP Conf. Proc., 1786, Article 100005 pp. (2016)
[46] Aoki, K.; Giovangigli, V., A kinetic model of adsorption on crystal surfaces, Phys. Rev. E, 99, Article 052137 pp. (2019)
[47] Aoki, K.; Giovangigli, V., A kinetic model of reactive crystal surfaces, Rarefied Gas Dynamics Conference, AIP Conf. Proc., 2132, Article 130003 pp. (2019)
[48] Lifshitz, E. M.; Pitaevskii, L. P., Physical Kinetics, Landau and Lifshitz Course on Theoretical Physics, Vol. 10 (1981), Elsevier
[49] Rossani, A., Generalized kinetic theory of electrons and phonons, Physica A, 305, 323-329 (2002) · Zbl 0984.82040
[50] Galler, M., Multigroup Equations for the Description of the Particle Transport in Semiconductors (2005), World Scientific: World Scientific Singapore · Zbl 1099.82023
[51] Bardos, C.; Golse, F.; Sone, Y., Half-space problems for the Boltzmann equation: A survey, J. Stat. Phys., 124, 275-300 (2006) · Zbl 1125.82013
[52] Waldmann, L.; Trübenbacher, E., Formale kinetische Theorie von Gasgemischen aus anregbaren molekülen, Zeitschr, Naturforschg, 17a, 363-376 (1962) · Zbl 0105.22806
[53] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1970), Cambridge University Press · Zbl 0098.39702
[54] Ferziger, J. H.; Kaper, H. G., Mathematical Theory of Transport Processes in Gases (1972), North Holland: North Holland Amsterdam
[55] Ern, A.; Giovangigli, V., (Multicomponent Transport Algorithms. Multicomponent Transport Algorithms, Lecture Notes in Physics, M, vol. 24 (1994)) · Zbl 0820.76002
[56] Giovangigli, V., Multicomponent Flow Modeling (1999), Birkhaüser: Birkhaüser Boston · Zbl 0956.76003
[57] Nagnibeda, E.; Kustova, E., Non-Equilibrium Reacting Gas Flows (2009), Springer Verlag: Springer Verlag Berlin · Zbl 1186.82003
[58] Capitelli, M.; Bruno, D.; Larichiuta, A., (Fundamental Aspects of Plasma Chemical Physics. Fundamental Aspects of Plasma Chemical Physics, Springer series on Atomic, Optical and Plasma Physics, vol. 74 (2013), Springer New York)
[59] Bogoliubov, N. N.; Bogoliubov, N. N., Generalized kinetic equations for a dynamical system interacting with a phonon field, Teoret. Mat. Fiz., 43, 3-17 (1980)
[60] Landau, L. D.; Lifshitz, E. M., Statistical Physics Landau and Lifshitz Course on Theoretical Physics, Vol. 5 (1980), Elsevier
[61] Rowlinson, J. S.; Widom, B., Molecular Theory of Capillarity (1989-2002), Dover publications: Dover publications Mineola
[62] Diu, B.; Guthmann, C.; Lederer, D.; Roulet, B., Éléments de Physique Statistique (1989), Hermann: Hermann Paris
[63] Powles, J. G.; Baker, S. E.; Evans, W. A.B., The chemical potential in atomically inhomogeneous fluids in external force fields by computer simulations, J. Chem. Phys., 101, 4098-4102 (1994)
[64] Weiner, J. H., Statistical Mechanics of Elasticity (2002), Dover publications: Dover publications Mineola · Zbl 1032.82001
[65] Barbante, P.; Frezzotti, A.; Giordano, D., A kinetic model for collisional effects in dense adsorbed gas layers, Rarefied Gas Dynamics Conference, AIP Conf. Proc., 1333, 458-463 (2011)
[66] Ruthven, D. M., Principles of Adsorption & Adsorption Processes (1984), John Wiley & Sons: John Wiley & Sons New York
[67] Parker, D. H.; Bartram, M. E.; Koel, B. E., Study of high coverage of atomic oxygen on the Pt(111) surface, Surf. Sci., 217, 489-510 (1989)
[68] Hjelmberg, H.; Lundqvist, B. I., Self-consistent calculation of molecular chemisorption on metals, Phys. Scr., 20, 192-201 (1979)
[69] Groß, A., Reactions at surfaces studied by ab initio dynamics calculations, Surf. Sci. Rep., 32, 291-340 (1998)
[70] Hafner, J., Ab initio simulations of materials using VASP: Density functional theory and beyond, J. Comput. Chem., 29, 2044-2078 (2008)
[71] Zilibotti, G.; Righi, M. C.; Ferrario, M., Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces, Phys. Rev. B, 79, Article 075420 pp. (2009)
[72] Jansen, A. P.J., (An Introduction To Kinetic Monte Carlo Simulations of Surface Reactions. An Introduction To Kinetic Monte Carlo Simulations of Surface Reactions, Lecture notes in Physics (2012), Springer Heidelberg) · Zbl 1272.74002
[73] Ward, B. M.; Getman, R. B., Molecular simulations of physical and chemical adsorption under gas and liquid environments using force field- and quantum mechanics-based method, Mol. Sim., 40, 78-689 (2014)
[74] Valentini, P.; Schwartzentruber, T. E.; Cozmuta, I., Reaxff grand canonical Monte Carlo simulation of adsorption and dissociation of oxygen on platinum (111), Surf. Sci., 605, 1941-1950 (2011)
[75] Zou, C.; van Duin, A. C.T.; Sorescu, D. C., Theoretical investigation of hydrogen adsorption and dissociation on iron and iron carbide surfaces using the Reaxff reactive force field method, Top. Catal., 55, 391-401 (2012)
[76] Ern, A.; Giovangigli, V., The kinetic equilibrium regime, Physica-A, 260, 49-72 (1998)
[77] Orsini, A.; Kustova, E., Elemental transport coefficients in viscous plasma flows near local thermodynamic equilibrium, Phys. Rev. E, 79, Article 056309 pp. (2009)
[78] Ludwig, G.; Heil, M., Boundary layer theory with dissociation and ionization, (Advances in Applied Mechanics, Vol. VI (1960), Academic Press: Academic Press New York), 39-118 · Zbl 0125.17603
[79] Alexeev, B. V.; Chikhaoui, A.; Grushin, I. T., Application of the generalized chapman-enskog method to the transport-coefficient calculation in a reacting gas mixture, Phys. Rev. E, 49, 2809-2825 (1994)
[80] Masmoudi, N., Diffusion limit of a semiconductor Boltzmann-Poisson system, SIAM J. Math. Anal., 38, 1788-1807 (2007) · Zbl 1206.82133
[81] Majorana, A.; Milazzo, C., Space homogeneous solutions of the linear semiconductor Boltzmann equation, J. Math. Anal. Appl., 259, 609-629 (2001) · Zbl 0986.35112
[82] Batchelor, G. K., An Introduction To Fluid Dynamics (1967), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0152.44402
[83] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Ann. Rev. Fluid Mech., 31, 567-603 (1999)
[84] van Dyke, M., Perturbation Methods in Fluid Mechanics (1964), The Parabolic Press: The Parabolic Press Stanford · Zbl 0136.45001
[85] Eckhaus, W., Asymptotic Analysis of Singular Perturbations (1979), North Holland: North Holland Amsterdam · Zbl 0421.34057
[86] Giovangigli, V.; Yang, Z. B.; Yong, W.-A., Relaxation limit and initial layer for a class of hyperbolic-parabolic systems, SIAM J. Math. Anal., 50, 4655-4697 (2018) · Zbl 1403.35026
[87] Marcelin, M. R., Sur la mécanique des phénomènes irréversibles, Comptes Rendus de l’Académie des Sciences de Paris, 1910, 1052-1055 (1910), Séance du 5 décembre · JFM 41.0985.02
[88] Keizer, J., Statistical Thermodynamics of Nonequilibrium Processes (1987), Springer Verlag: Springer Verlag New York
[89] Deutschmann, O.; Knözinger, H.; Kochloefl, K.; Turek, T., Heterogeneous catalysis and solid catalysts, 1. Fundamentals, (Ullman’S Encyclopedia of Industrial Chemistry (2012), Wiley-VCH Verlag Gmbh)
[90] Ho, P.; Coltrin, M. E.; Brand, W. G., Laser-induced fluorescence measurements and kinetic analysis of Si atoms formation in a rotating disk chemical vapor deposition reactor, J. Phys. Chem., 98, 10138-10147 (1994)
[91] Chatterjee, D.; Deutschmann, O.; Warnatz, J., Detailed surface reaction mechanism in a three way catalyst, Faraday Discuss., 119, 371-384 (2002)
[92] Meynet, N.; Bentaïb, A.; Giovangigli, V., Impact of oxygen starvation on operation and potential ignition of passive auto-catalytic recombiners, Combust. Flame, 161, 2192-2202 (2014)
[93] Glorian, J.; Catoire, L.; Gallier, S.; Cesco, N., Gas-surface thermochemistry and kinetics for aluminum particle combustion, Proc. Comb. Inst., 35, 2439-2446 (2015)
[94] Motz, H.; Wise, H., Diffusion and heterogeneous reaction. III. Atom recombination at a catalytic boundary, J. Chem. Phys., 32, 1893-1894 (1960)
[95] Krishna, R., Multicomponent surface diffusion of adsorbed species: A description based on the generalized Maxwell-Stefan equations, Chem. Eng. Sci., 45, 1779-1791 (1990)
[96] Janardhanan, V. M.; Deutschmann, O., Modeling diffusion limitation in solid-oxide fuel cells, Electrochim. Acta, 56, 9775-9782 (2011)
[97] Waldmann, L., Transporterscheinungen in gasen von mittlerem druck, (Flügge, S., HandBuch Der Physik, Vol. 12 (1958), Springer Verlag: Springer Verlag Berlin), 295-514
[98] Mehrer, H., (Diffusion in Solids, Springer Series in Solid State Physics, Vol. 155 (2007), Springer Verlag: Springer Verlag New York)
[99] Antczak, G.; Ehrlich, G., Surface Diffusion (2010), Cambridge University Press
[100] Nitta, T.; Shigetomi, T.; Kuro-oka, M.; Katayama, T., An adsorption isotherm of multi-site occupancy model for homogeneous surfaces, J. Chem. Eng. Japan, 17, 39-45 (1984)
[101] Bai, R.; Deng, J.; Yang, R. T., Improved multisite Langmuir model for mixture adsorption using multiregion adsorption theory, Langmuir, 19, 2776-2781 (2003)
[102] Oxenius, J., (Kinetic Theory of Particles and Photons. Kinetic Theory of Particles and Photons, Springer Series in Electrophysics, vol. 20 (1986), Springer Verlag: Springer Verlag Berlin)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.