×

Locally symmetric quaternionic Kähler manifolds. (English) Zbl 0797.53029

Summary: One derives a criterion for a quaternionic Kähler manifold to be locally symmetric by using the covariant derivative of the Riemannian curvature tensor. Then one shows the usefulness of this fundamental result by characterizing this class of spaces by means of the intrinsic and intrinsic geometry of the geodesic spheres and the properties of local reflections (geodesic symmetries) and rotations. The results are similar to the ones obtained in [M. Djorić and the second author, Math. J. Okoyama Univ. 32, 187-206 (1990; Zbl 0735.53049) and K. Sekigawa and the second author, Q. J. Math., Oxf. II. Ser. 37, 95-103 (1986; Zbl 0589.53068)] in the framework of Kähler geometry.

MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C35 Differential geometry of symmetric spaces
53C40 Global submanifolds
Full Text: DOI

References:

[1] Alekseevskii, D. V.; Marchiafava, S., Quaternionic-like structures on a manifold II, Rend. Mat. Acc. Lincei, 4, 53-61 (1993) · Zbl 0855.53018
[2] Besse, A. L., Einstein Manifolds, (Ergeb. Math. Grenzgeb. Folge 10, 3 (1987), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York) · Zbl 1147.53001
[3] Bueken, P.; Vanhecke, L., Reflections in contact geometry, (Dodson, C. T.J., Proc. Curvature Geometry Workshop Lancaster (1989), Univ. Lancaster), 175-190 · Zbl 0742.53009
[4] Bueken, P., Reflections and rotations in contact geometry, doctoral dissertation (1992), Catholic University Leuven · Zbl 0753.53019
[5] Chen, B. Y.; Vanhecke, L., Differential geometry of geodesic spheres, J. Reine Angew. Math., 325, 28-67 (1981) · Zbl 0503.53013
[6] Djorić, M.; Vanhecke, L., Naturally reductive quasi-Kähler manifolds, C.R. Math. Rep. Acad. Sci. Canada, 11, 69-74 (1989) · Zbl 0678.53040
[7] Djorić, M.; Vanhecke, L., Almost Hermitian geometry, geodesic spheres and symmetries, Math. J. Okayama Univ., 32, 187-206 (1990) · Zbl 0735.53049
[8] Djorić, M.; Vanhecke, L., Geometry of geodesic spheres on Sasakian manifolds, Rend. Sem. Mat. Univ. Politec. Torino, 49, 329-357 (1991) · Zbl 0782.53050
[9] González-Dávila, J. C.; González-Dávila, M. C.; Vanhecke, L., (Chinea, D.; Sierra, J. M., Proc. Workshop Recent Topics in Differential Geometry Puerto de la Cruz, 1990. Proc. Workshop Recent Topics in Differential Geometry Puerto de la Cruz, 1990, Killing-transversally symmetric spaces, 32 (1991), Secret. Public. Univ. de La Laguna), 77-88, Serie Informes · Zbl 0735.53037
[10] J.C. González-Dávila and L. Vanhecke, Geodesic spheres and isometric flows, preprint.; J.C. González-Dávila and L. Vanhecke, Geodesic spheres and isometric flows, preprint.
[11] Gray, A., Weak holonomy groups, Math. Z., 123, 290-300 (1971) · Zbl 0222.53043
[12] Gray, A., The volume of a small geodesic ball in a Riemannian manifold, Michigan Math. J., 20, 329-344 (1973) · Zbl 0279.58003
[13] Gray, A., Classification des variétés approximativement kählériennes de courbure sectionelle holomorphe constante, C.R. Acad. Sci. Paris, 279, 797-800 (1974) · Zbl 0301.53016
[14] Ishihara, S., Quaternion Kähler manifolds, J. Differential Geom., 9, 483-500 (1974) · Zbl 0297.53014
[15] Konishi, M., On Jacobi vector fields in quaternion Kaehler manifolds, Hokkaido Math. J., 14, 169-178 (1975) · Zbl 0329.53030
[16] Kowalski, O.; Vanhecke, L., A generalization of a theorem on naturally reductive homogeneous spaces, Proc. Amer. Math. Soc., 91, 433-435 (1984) · Zbl 0542.53029
[17] Kowalski, O.; Vanhecke, L., The Gelfand theorem and its converse for Kähler manifolds, Proc. Amer. Math. Soc., 102, 150-152 (1988) · Zbl 0641.53062
[18] Ledger, A. J.; Vanhecke, L., Symmetries and locally \(s\)-regular manifolds, Ann. Global Anal. Geom., 5, 151-160 (1987) · Zbl 0602.53034
[19] Nicolodi, L.; Vanhecke, L., Rotations and Hermitian symmetric spaces, Monatsh. Math., 109, 279-291 (1990) · Zbl 0712.53007
[20] Petrov, A. Z., Einstein Spaces (1969), Pergamon Press: Pergamon Press New York, translated by R.F. Kelleher · Zbl 0174.28305
[21] Poon, Y. S.; Salamon, S. M., Quaternionic Kähler 8-manifolds with positive scalar curvature, J. Differential Geom., 33, 363-378 (1991) · Zbl 0733.53035
[22] Salamon, S., Riemannian Geometry and Holonomy Groups, (Pitman Research Notes in Math. Series, 201 (1989), Longman: Longman Harlow) · Zbl 0685.53001
[23] Sekigawa, K.; Vanhecke, L., Symplectic geodesic symmetries on Kähler manifolds, Quart. J. Math. Oxford, 37, 95-103 (1986) · Zbl 0589.53068
[24] Swann, A. F., (Dodson, C. T.J., Quaternionic Kähler geometry and the fundamental 4-form. Quaternionic Kähler geometry and the fundamental 4-form, Proc. Workshop on Curvature Theory, Lancaster 1989 (1989), Univ. of Lancaster), 165-173 · Zbl 0744.53020
[25] Vanhecke, L., Symmetries and homogeneous Kähler manifolds, (Krupka, D.; S̆vec, A., Differential Geometry and its Applications (1987), Reidel Publ. Co: Reidel Publ. Co Dordrecht), 339-357 · Zbl 0633.53075
[26] Vanhecke, L., Geometry in normal and tubular neighborhoods, (Proc. Workshop on Differential Geometry and Topology, Vol. 58 (1988), Rend. Sem. Fac. Sci. Univ. Cagliari), 73-176, Supplemento al
[27] Vanhecke, L.; Willmore, T. J., Interaction of tubes and spheres, Math. Ann., 263, 31-42 (1983) · Zbl 0491.53034
[28] Wolf, J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 14, 1033-1047 (1965) · Zbl 0141.38202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.