×

Deformations of \(\text{G}_2\)-instantons on nearly \(\text{G}_2\) manifolds. (English) Zbl 1539.53035

A \(\text{G}_2\)-structure on a 7-manifold is nearly parallel if the defining 3-form \(\varphi\) satisfies the equation \(d\varphi=\tau_0\ast\varphi\), for some (constant) function \(\tau_0\). A 7-manifold admits a \(\text{G}_2\)-structure if and only if it is orientable and spin. Via this link with spin geometry, nearly parallel \(\text{G}_2\)-structures can be equivalently characterized as the \(\text{G}_2\)-structures with a real spinor \(\eta\) satisfying \(\nabla_X\eta=-\frac{\tau_0}{8}X\cdot\eta\); hence, \(\eta\) is a Killing spinor, and the manifold is Einstein with positive scalar curvature.
The author considers instantons on a nearly parallel \(\text{G}_2\)-manifold \(M\). These are connections on principal \(K\)-bundles over \(M\) whose curvature 2-form \(F\) satisfies the conditions \[ F\cdot\eta=0\Leftrightarrow \ F\wedge\varphi=\ast F \Leftrightarrow F\wedge\ast\varphi=0\Leftrightarrow F\lrcorner\varphi=0\,. \] Instantons on nearly parallel \(\text{G}_2\)-manifolds solve the Yang-Mills equation \(d^\ast_\nabla F=0\), albeit they need not be minimizers of the Yang-Mills functional. Nearly parallel \(\text{G}_2\)-instantons on certain Aloff-Wallach spaces were constructed by G. Ball and G. Oliveira [Geom. Topol. 23, No. 2, 685–743 (2019). (2019; Zbl 1418.53027)], who also classified invariant \(\text{G}_2\)-instantons with gauge group \(\mathrm{U}(1)\) and \(\mathrm{SO}(3)\) on these spaces.
The author is interested in deformations of such instantons. He shows that the instantons are rigid if, for example, \(K\) is abelian. The author then proceeds to a systematic analysis of normal homogeneous nearly parallel \(\text{G}_2\)-manifolds, where he describes the deformation space of the characteristic connection (which is an instanton).

MSC:

53C10 \(G\)-structures
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
53C27 Spin and Spin\({}^c\) geometry
53C30 Differential geometry of homogeneous manifolds
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism

Citations:

Zbl 1418.53027

References:

[1] Agricola, I.; Becker-Bender, J.; Kim, H., Twistorial eigenvalue estimates for generalized Dirac operators with torsion, Adv. Math., 243, 296-329 (2013) · Zbl 1287.58015 · doi:10.1016/j.aim.2013.05.001
[2] Agricola, I.; Chiossi, SG; Friedrich, T.; Höll, J., Spinorial description of \({\rm SU}(3)\)- and \({\rm G}_2\)-manifolds, J. Geom. Phys., 98, 535-555 (2015) · Zbl 1333.53037 · doi:10.1016/j.geomphys.2015.08.023
[3] Agricola, I.; Friedrich, T., On the holonomy of connections with skew-symmetric torsion, Mathematische Annalen, 328, 4, 711-748 (2004) · Zbl 1055.53031 · doi:10.1007/s00208-003-0507-9
[4] Agricola, I.; Ferreira, AC, Einstein manifolds with skew torsion, Q. J. Math., 65, 3, 717-741 (2014) · Zbl 1368.53034 · doi:10.1093/qmath/hat050
[5] Agricola, I.; Friedrich, T.; Höll, J., \({\rm Sp}(3)\) structures on 14-dimensional manifolds, J. Geom. Phys., 69, 12-30 (2013) · Zbl 1291.53036 · doi:10.1016/j.geomphys.2013.02.010
[6] Agricola, I., Connections on naturally reductive spaces, their Dirac operator and homogeneous models in string theory, Comm. Math. Phys., 232, 3, 535-563 (2003) · Zbl 1032.53041 · doi:10.1007/s00220-002-0743-y
[7] Agricola, I.; Höll, J., Cones of \(G\) manifolds and Killing spinors with skew torsion, Ann. Mat. Pura Appl., 194, 3, 673-718 (2015) · Zbl 1319.53043 · doi:10.1007/s10231-013-0393-z
[8] Atiyah, MF; Hitchin, NJ; Singer, IM, Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. London Ser. A, 362, 1711, 425-461 (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[9] Alexandrov, B.; Semmelmann, U., Deformations of nearly parallel \({\rm G}_2\)-structures, Asian J. Math., 16, 4, 713-744 (2012) · Zbl 1266.53048 · doi:10.4310/AJM.2012.v16.n4.a6
[10] Bär, C., Real Killing spinors and holonomy, Comm. Math. Phys., 154, 3, 509-521 (1993) · Zbl 0778.53037 · doi:10.1007/BF02102106
[11] Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279-330 (1955) · Zbl 0068.36002
[12] Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistor and Killing spinors on Riemannian manifolds (1991) · Zbl 0705.53004
[13] Bismut, J-M, A local index theorem for non-Kähler manifolds, Math. Ann., 284, 4, 681-699 (1989) · Zbl 0666.58042 · doi:10.1007/BF01443359
[14] Ball, G.; Oliveira, G., Gauge theory on Aloff-Wallach spaces, Geom. Topol., 23, 2, 685-743 (2019) · Zbl 1418.53027 · doi:10.2140/gt.2019.23.685
[15] Bryant, R.L.: Some remarks on \(G_2\)-structures. In: Proceedings of Gökova Geometry-Topology Conference 2005, Gökova Geometry/Topology Conference (GGT), Gökova, 75- 109 (2006) · Zbl 1115.53018
[16] Bryant, RL, Metrics with exceptional holonomy, Ann. Math., 126, 3, 525-576 (1987) · Zbl 0637.53042 · doi:10.2307/1971360
[17] Charbonneau, B.; Harland, D., Deformations of nearly Kähler instantons, Commun. Math. Phys., 348, 3, 959-990 (2016) · Zbl 1429.53037 · doi:10.1007/s00220-016-2675-y
[18] Chrysikos, I., Killing and twistor spinors with torsion, Ann. Global Anal. Geom., 49, 2, 105-141 (2016) · Zbl 1365.53049 · doi:10.1007/s10455-015-9483-z
[19] Clarke, A., Instantons on the exceptional holonomy manifolds of Bryant and Salamon, J. Geom. Phys., 82, 84-97 (2014) · Zbl 1293.53032 · doi:10.1016/j.geomphys.2014.04.006
[20] Cleyton, R.; Swann, A., Einstein metrics via intrinsic or parallel torsion, Mathematische Zeitschrift, 247, 3, 513-528 (2004) · Zbl 1069.53041 · doi:10.1007/s00209-003-0616-x
[21] Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, Oxford Science Publications(1990) · Zbl 0820.57002
[22] Driscoll, J.: Deformations of asymptotically conical \(\rm G_2\)-instantons, to appear in Communications in Mathematical Physics (2020)
[23] Dwivedi, S., Singhal, R.: Deformation theory of nearly \(G_2\) manifolds, to appear in Communications in Analysis and Geometry. arXiv:2007.02497 (2020-07)
[24] Friedrich, T.; Ivanov, S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., 6, 2, 303-335 (2002) · Zbl 1127.53304 · doi:10.4310/AJM.2002.v6.n2.a5
[25] Friedrich, T.; Kath, I., Einstein manifolds of dimension five with small first eigenvalue of the Dirac operator, J. Diff. Geom., 29, 2, 263-279 (1989) · Zbl 0633.53069
[26] Friedrich, T.; Kath, Ines, 7-dimensional compact riemannian manifolds with killing spinors, Commun. Math. Phys., 133, 3, 543-561 (1990) · Zbl 0722.53038 · doi:10.1007/BF02097009
[27] Friedrich, T.; Kath, I.; Moroianu, A.; Semmelmann, U., On nearly parallel \(G_2\)-structures, J. Geometry Phys., 23, 3, 259-286 (1997) · Zbl 0898.53038 · doi:10.1016/S0393-0440(97)80004-6
[28] Friedrich, T., The second Dirac eigenvalue of a nearly parallel \({\rm G}_2\)-manifold, Adv. Appl. Clifford Algebra, 22, 2, 301-311 (2012) · Zbl 1269.53048 · doi:10.1007/s00006-011-0301-9
[29] Goette, S., Equivariant \(\eta \)-invariants on homogeneous spaces, Math. Z., 232, 1, 1-42 (1999) · Zbl 0941.58016 · doi:10.1007/PL00004757
[30] Gray, Alfred, Weak holonomy groups, Mathematische Zeitschrift, 123, 4, 290-300 (1971) · Zbl 0222.53043 · doi:10.1007/BF01109983
[31] Grunewald, Ralf, Six-dimensional Riemannian manifolds with a real Killing spinor, Ann. Global Anal. Geom., 8, 1, 43-59 (1990) · Zbl 0704.53050 · doi:10.1007/BF00055017
[32] Hijazi, O.: Caractérisation de la sphère par les premières valeurs propres de l’opérateur de Dirac en dimensions
[(3,4,7\]\) et \(8\), C. R. Acad. Sci. Paris Sér. I Math., 303(9), 417- 419 (1986) · Zbl 0606.53024
[33] Harland, D.; Nölle, C., Instantons and Killing spinors, J. High Energy Phys., 3, 82 (2012) · Zbl 1309.81162 · doi:10.1007/JHEP03(2012)082
[34] Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 9, Second printing, revised (1978) · Zbl 0447.17001
[35] Joyce, DD, Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs (2000), Oxford: Oxford University Press, Oxford · Zbl 1027.53052
[36] Karigiannis, S., Flows of \(G_2\)-structures. I, Q. J. Math., 60, 4, 487-522 (2009) · Zbl 1190.53025 · doi:10.1093/qmath/han020
[37] Karigiannis, S.: Some notes on \(G_2\) and \({\rm Spin}(7)\) geometry, 11, 129-146 (2010) · Zbl 1248.53040
[38] Knapp, A.W.: Representation theory of semisimple groups: An overview based on examples (pms-36). Princeton University Press, REV - Revised (1986) · Zbl 0604.22001
[39] Kostant, Bertram, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J., 100, 3, 447-501 (1999) · Zbl 0952.17005 · doi:10.1215/S0012-7094-99-10016-0
[40] Lawson, H.B., Michelson, Marie-Louise, Spin geometry (PMS-38), Princeton University Press, Princeton (1989) · Zbl 0688.57001
[41] Moroianu, A.; Semmelmann, U., The Hermitian Laplace operator on nearly Kähler manifolds, Comm. Math. Phys., 294, 1, 251-272 (2010) · Zbl 1210.58028 · doi:10.1007/s00220-009-0903-4
[42] Earp, S.; Henrique, N.; Walpuski, T., \({\rm G}_2\)-instantons over twisted connected sums, Geom. Topol., 19, 3, 1263-1285 (2015) · Zbl 1317.53034 · doi:10.2140/gt.2015.19.1263
[43] Walpuski, T., \({\rm G}_2\)-instantons over twisted connected sums: an example, Math. Res. Lett., 23, 2, 529-544 (2016) · Zbl 1350.53032 · doi:10.4310/MRL.2016.v23.n2.a11
[44] Waldron, A.: \({\rm G}_2\)-instantons on the 7-sphere, (2020-02), arXiv e-prints, arXiv:2002.02386
[45] Wang, MY, Parallel spinors and parallel forms, Ann. Global Anal. Geom., 7, 1, 59-68 (1989) · Zbl 0688.53007 · doi:10.1007/BF00137402
[46] Wilking, B., The normal homogeneous space \(({\rm SU}(3)\times{\rm SO}(3))/{\rm U}^\bullet (2)\) has positive sectional curvature, Proc. Am. Math. Soc., 127, 4, 1191-1194 (1999) · Zbl 0948.53025 · doi:10.1090/S0002-9939-99-04613-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.