×

Frölicher-Nijenhuis cohomology on \(G_2\)- and \(\mathrm{Spin}(7)\)-manifolds. (English) Zbl 1403.53044

Summary: In this paper, we show that a parallel differential form \(\Psi\) of even degree on a Riemannian manifold allows to define a natural differential both on \(\Omega^\ast(M)\) and \(\Omega^\ast(M, T M)\), defined via the Frölicher-Nijenhuis bracket. For instance, on a Kähler manifold, these operators are the complex differential and the Dolbeault differential, respectively. We investigate this construction when taking the differential with respect to the canonical parallel \(4\)-form on a \(G_2\)- and \(\mathrm{Spin}(7)\)-manifold, respectively. We calculate the cohomology groups of \(\Omega^\ast(M)\) and give a partial description of the cohomology of \(\Omega^\ast(M, T M)\).

MSC:

53C29 Issues of holonomy in differential geometry
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
17B56 Cohomology of Lie (super)algebras
17B66 Lie algebras of vector fields and related (super) algebras

References:

[1] Berger, M., Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes, Bull. Soc. Math. France, 83, 279-330, (1955) · Zbl 0068.36002
[2] Besse, A., Einstein Manifolds, (1987), Springer-Verlag · Zbl 0613.53001
[3] Bonan, E., Sur les variétés riemanniennes à groupe d’holonomie \(G_2\) ou \(\text{Spin}(7)\), C. R. Acad. Sci. Paris, 262, 127-129, (1966) · Zbl 0134.39402
[4] Bryant, R., Metric with exceptional holonomy, Ann. of Math., 126, 525-576, (1987) · Zbl 0637.53042
[5] Bryant, R., Some remarks on \(G_2\)-structures, Proc. Gökova Geometry-Topology Conf. 2005, 75-109, (2006) · Zbl 1115.53018
[6] Bryant, R.; Salamon, S., On the construction of some complete metrics with exceptional holonomy, Duke Math. J., 58, 829-850, (1989) · Zbl 0681.53021
[7] Calabi, E., Métriques kähleriennes et fibrés holomorphes, Ann. Sci Écol. Norm. Sup., 12, 269-294, (1979) · Zbl 0431.53056
[8] E. B. Dynkin, The maximal subgroups of the classical groups, Tr. Mosk. Math. Soc.1 (1952) 40-166 (in Russian) Amer. Math. Soc. Transl. Ser 2 6 (1957) 245-378. · Zbl 0077.03403
[9] Fernández, M.; Gray, A., Riemannian manifolds with structure group \(G_2\), Ann. Mat. Pura Appl., 32, 19-45, (1982) · Zbl 0524.53023
[10] Frölicher, A.; Nijenhuis, A., Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms, Indag. Math., 18, 338-359, (1956) · Zbl 0079.37502
[11] Frölicher, A.; Nijenhuis, A., Some new cohomology invariants for complex manifolds. I, II, Indag. Math., 18, 553-564, (1956) · Zbl 0072.40602
[12] Gray, A., Weak holonomy groups, Math. Z., 123, 290-300, (1971) · Zbl 0222.53043
[13] Harvey, R.; Lawson, H. B., Calibrated geometry, Acta Math., 148, 47-157, (1982) · Zbl 0584.53021
[14] Humphreys, J., Introduction to Lie Algebras and Representation Theory, 9, (1978), Springer-Verlag: Springer-Verlag, New York · Zbl 0254.17004
[15] Joyce, D., Compact Riemannian \(7\)-manifolds with holonomy \(G_2\), I, II, J. Differential Geom., 43, 2, 329-375, (1996) · Zbl 0861.53023
[16] Joyce, D., Compact \(8\)-manifolds with holonomy \(\text{Spin}(7)\), Invent. Math., 123, 3, 507-552, (1996) · Zbl 0858.53037
[17] Joyce, D., Compact Manifolds with Special Holonomy, (2000), Oxford University Press · Zbl 1027.53052
[18] Joyce, D., Riemannian Holonomy Groups and Calibrated Geometry, (2007), Oxford University Press · Zbl 1200.53003
[19] Karigiannis, S., Deformations of \(G_2\) and \(\text{Spin}(7)\)-structures, Canad. J. Math., 57, 1012-1055, (2005) · Zbl 1091.53026
[20] Kawai, K.; Lê, H. V.; Schwachhöfer, L., The Frölicher-Nijenhuis bracket and the geometry of \(G_2\)- and \(\text{Spin}(7)\)-manifolds, Ann. Mat. Pura Appl. (4), 197, 2, 411-432, (2018) · Zbl 1386.53052
[21] Kolar, I.; Michor, P. W.; Slovak, J., Natural Operators in Differential Geometry, (1993), Springer · Zbl 0782.53013
[22] Lê, H. V., Geometric structures associated with a simple Cartan 3-form, J. Geom. Phys., 70, 205-223, (2013) · Zbl 1280.53030
[23] Sullivan, D., Infinitesimal computations in topology, Publ. Math. Inst. Hautes Études Sci., 47, 269-331, (1977) · Zbl 0374.57002
[24] Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Commun. Pure Appl. Math., 31, 339-411, (1978) · Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.