×

Curvature decomposition of \(G_2\)-manifolds. (English) Zbl 1175.53035

A \(G_2\)-structure on a smooth \(7\)-manifold \(M\) is defined by a \(3\)-form \(\phi\) such that the symmetric bilinear form \[ (u,v) \mapsto B_\phi (u,v) = (u \lrcorner \phi ) \wedge (v \lrcorner\phi ) \wedge \phi \in \wedge^7T_p^*M, \] \(u, v\in T_pM\), is definite for all \(p\in M\). The \(3\)-form \(\phi\) induces the volume form \(\nu = (\det B_\phi )^\frac{1}{9}\) and the Riemannian metric \(g= \frac{1}{\nu}B_\phi\). The curvature tensor \(R\) of \(g\) can be decomposed into 5 components, which correspond to the five irreducible \(G_2\)-submodules of the \(196\)-dimensional vector space of algebraic curvature tensors of type \(\mathfrak{so}(7)\): scalar curvature \(s\), trace-free Ricci curvature \(Ric_0\) and three components \(W_{77}\), \(W_{64}\) and \(W_{27}\) of the Weyl curvature \(W=W_{77} +W_{64} + W_{27}\). A \(G_2\)-structure \(\phi\) is parallel if and only if the holonomy group of \(g\) is a subgroup of \(G_2\). In that case we have \(R=W_{77}\).
The authors provide explicit formulas for these curvature components in terms of certain generalized Ricci contractions. In particular, \(W_{27}\) is related to a certain symmetric trace-free tensor \(Ric^{\mathcal W}\). It is proven that various curvature assumptions (such as \(W_{27}=0\)) imply that \(\phi\) is parallel. For closed \(G_2\)-structures \(\phi\), the cup product of the first Pontrjagin class of \(M\) with the de Rham cohomology class of \(\phi\) is a well-defined top cohomology class. Integrating it over a closed manifold \(M\) yields a numerical invariant \(n(M,\phi )\in \mathbb{R}\) of the \(G_2\)-structure. The authors show (among other extimates) that \(n(M,\phi )\) is bounded from below by the integral of \(\frac{3}{16}s^2 -\| W_{77}\|^2\).
It is shown that the closed \(G_2\)-structures realising equality in that inequality have parallel intrinsic torsion and that \((M,\phi )\) is locally isomorphic to a homogeneous \(G_2\)-manifold constructed by R. L. Bryant [“Some remarks on \(G_2\)-structures”, in Akbulut, Selman (ed.) et al., Proceedings of the 11th and 12th Gökova geometry-topology conferences, Cambridge, MA: International Press, 75–109 (2006; Zbl 1115.53018)]. Further examples of \(G_2\)-structures enjoying various interesting properties are constructed in the last chapter.

MSC:

53C10 \(G\)-structures
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

Citations:

Zbl 1115.53018

References:

[1] Alekseevskiĭ, D. V., Riemannian spaces with unusual holonomy groups, Funkcional. Anal. i Priložen, 2, 2, 1-10 (1968) · Zbl 0175.18902
[2] Ambrose, W.; Singer, I. M., On homogeneous Riemannian manifolds, Duke Math. J., 25, 647-669 (1958) · Zbl 0134.17802
[3] Bedulli, L.; Vezzoni, L., The Ricci tensor of SU(3)-manifolds, J. Geom. Phys., 57, 4, 1125-1146 (2007) · Zbl 1126.53017
[4] Besse, A. L., Einstein manifolds, (Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10 (1987), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1147.53001
[5] Bonan, E., Sur des variétés riemanniennes à groupe d’holonomie \(G_2\) ou spin (7), C. R. Acad. Sci. Paris Sér. A-B, 262, A127-A129 (1966) · Zbl 0134.39402
[6] Brinkmann, H. W., Einstein spaces which are mapped conformally on each other, Math. Ann., 94, 1, 119-145 (1925) · JFM 51.0568.03
[7] Bryant, R. L., Metrics with exceptional holonomy, Ann. of Math. (2), 126, 3, 525-576 (1987) · Zbl 0637.53042
[8] Bryant, R. L., Metrics with exceptional holonomy, Ann. of Math. (2), November (2006), E-mail
[9] Bryant, R. L., Some remarks on \(G_2\)-structures, (Akbulut, S.; Önder, T.; Stern, R. J., Proceeding of Gökova Geometry-Topology Conference 2005 (2006), International Press) · Zbl 1115.53018
[10] R. Cleyton, \(G\); R. Cleyton, \(G\)
[11] R. Cleyton, S. Ivanov, Conformal equivalence between certain geometries in dimension 6 and 7, Math. Res. Lett. (in press) arXiv:math.DG/0607487; R. Cleyton, S. Ivanov, Conformal equivalence between certain geometries in dimension 6 and 7, Math. Res. Lett. (in press) arXiv:math.DG/0607487 · Zbl 1204.53019
[12] Cleyton, R.; Ivanov, S., On the geometry of closed \(G_2\)-structures, Commun. Math. Phys., 270, 1, 53-67 (2007) · Zbl 1122.53026
[13] Cleyton, R.; Swann, A., Cohomogeneity-one \(G_2\)-structures, J. Geom. Phys., 44, 2-3, 202-220 (2002) · Zbl 1025.53024
[14] Cleyton, R.; Swann, A., Einstein metrics via intrinsic or parallel torsion, Math. Z., 247, 3, 513-528 (2004) · Zbl 1069.53041
[15] Falcitelli, M.; Farinola, A.; Salamon, S., Almost-Hermitian geometry, Differential Geom. Appl., 4, 3, 259-282 (1994) · Zbl 0813.53044
[16] Fernández, M., An example of a compact calibrated manifold associated with the exceptional Lie group \(G_2\), J. Differential Geom., 26, 2, 367-370 (1987) · Zbl 0604.53013
[17] Fernández, M., A family of compact solvable \(G_2\)-calibrated manifolds, Tohoku Math. J. (2), 39, 2, 287-289 (1987) · Zbl 0609.53011
[18] Fernández, M.; Gray, A., Riemannian manifolds with structure group \(G_2\), Ann. Mat. Pura Appl. (4), 132, 19-45 (1982), 1983 · Zbl 0524.53023
[19] Friedrich, Th., \(G_2\)-manifolds with parallel characteristic torsion, Diff. Geom. Appl., 25, 6, 632-648 (2007) · Zbl 1141.53019
[20] Friedrich, Th.; Ivanov, S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., 6, 2, 303-335 (2002) · Zbl 1127.53304
[21] Friedrich, Th.; Ivanov, S., Killing spinor equations in dimension 7 and geometry of integrable \(G_2\)-manifolds, J. Geom. Phys., 48, 1, 1-11 (2003) · Zbl 1029.81037
[22] Gray, A., Vector cross products on manifolds, Trans. Amer. Math. Soc., 141, 465-504 (1969) · Zbl 0182.24603
[23] Gray, A., Weak holonomy groups, Math. Z., 123, 290-300 (1971) · Zbl 0222.53043
[24] N. Hitchin, The geometry of three-forms in six and seven dimensions. arXiv:math.DG/0010054; N. Hitchin, The geometry of three-forms in six and seven dimensions. arXiv:math.DG/0010054 · Zbl 1036.53042
[25] Ivanov, S.; Parton, M.; Piccinni, P., Locally conformal parallel \(G_2\) and Spin(7) manifolds, Math. Res. Lett., 13, 2-3, 167-177 (2006) · Zbl 1118.53028
[26] Joyce, D. D., Compact manifolds with special holonomy, (Oxford Mathematical Monographs (2000), Oxford University Press: Oxford University Press Oxford) · Zbl 0858.53037
[27] Joyce, Dominic D., Compact Riemannian 7-manifolds with holonomy \(G_2\). I, II, J. Differential Geom., 43, 2, 291-328 (1996), 329-375 · Zbl 0861.53022
[28] S. Karigiannis, Geometric flows on manifolds with \(G_2\) arXiv:math.DG/0702077; S. Karigiannis, Geometric flows on manifolds with \(G_2\) arXiv:math.DG/0702077
[29] Kovalev, A., Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math., 565, 125-160 (2003) · Zbl 1043.53041
[30] Lawson, H. B.; Michelsohn, M.-L., Spin geometry, (Princeton Mathematical Series, vol. 38 (1989), Princeton University Press: Princeton University Press Princeton, NJ) · Zbl 0688.57001
[31] Martín-Cabrera, F.; Swann, A., Curvature of (special) almost Hermitian manifolds, Pacific J. Math., 228, 1, 165-184 (2006) · Zbl 1129.53016
[32] Nomizu, K., Invariant affine connections on homogeneous spaces, Amer. J. Math., 76, 33-65 (1954) · Zbl 0059.15805
[33] R. Reyes Carrión, Some special geometries defined by Lie groups, Ph.D. Thesis, St. Catherine’s College, University of Oxford, 1993; R. Reyes Carrión, Some special geometries defined by Lie groups, Ph.D. Thesis, St. Catherine’s College, University of Oxford, 1993
[34] Salamon, S., Riemannian geometry and holonomy groups, (Pitman Research Notes in Mathematics Series, vol. 201 (1989), Longman Scientific & Technical: Longman Scientific & Technical Harlow) · Zbl 0685.53001
[35] U. Semmelmann, G. Weingart, The Weitzenböck Machine. arXiv:math.DG/0702031; U. Semmelmann, G. Weingart, The Weitzenböck Machine. arXiv:math.DG/0702031 · Zbl 1188.53019
[36] Verbitsky, M., An intrinsic volume functional on almost complex 6-manifolds and nearly Kaehler geometry, Pacific J. Math., 235, 2, 323-344 (2008) · Zbl 1156.53045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.