×

Semiflows and intrinsic shape in topological spaces. (English) Zbl 1491.37022

Summary: In this paper we apply the intrinsic approach to shape to study attractors in topological spaces.

MSC:

37B35 Gradient-like behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems
37B25 Stability of topological dynamical systems
54C56 Shape theory in general topology
Full Text: DOI

References:

[1] K. Borsuk, Theory of shape, PWN-Polish Scientific Publishers, Warsaw, 1975. · Zbl 0317.55006
[2] B. A. Bogatyi and V. I. Gutsu, On the structure of attracting compacta, Differentsial’nye Uravneniya 25 (1989), 907-909, 920. · Zbl 0703.54020
[3] J. M. Ball, Stability theory for an extensible beam, J. Differential Equations 14 (1973), 399-418. · Zbl 0247.73054 · doi:10.1016/0022-0396(73)90056-9
[4] N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Springer-Verlag, New York-Berlin, 1970. · Zbl 0213.10904
[5] Z. Čerin, Shape via multi-nets, Tsukuba J. Math. 19 (1995), 245-268. · Zbl 0851.54019 · doi:10.21099/tkbjm/1496162867
[6] A. Dold, Lectures on algebraic topology, Springer-Verlag, New York-Berlin, 1972. · Zbl 0234.55001
[7] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, 15, Princeton University Press, New Jersey, 1952. · Zbl 0047.41402
[8] J. E. Felt, \( \varepsilon \)-continuity and shape, Procedings of the American Mathematical society 46 (1974), 426-430. · Zbl 0292.55013 · doi:10.2307/2039941
[9] A. Giraldo, M. A. Morón, F. R. Ruiz Del Portal and J. M. R. Sanjurjo, Shape of global attractors in topological spaces, Nonlinear Anal. 60 (2005), 837-847. · Zbl 1060.37010 · doi:10.1016/j.na.2004.03.036
[10] M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations 133 (1997), 1-14. · Zbl 0901.58027 · doi:10.1006/jdeq.1996.3166
[11] B. Günter and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993), 321-329. · Zbl 0822.54014 · doi:10.2307/2159860
[12] A. Giraldo and J. M. R. Sanjurjo, On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Z. 232 (1999), 739-746. · Zbl 0942.37052 · doi:10.1007/PL00004781
[13] N. R. Howes, Modern analysis and topology, Springer-Verlag, New York, 1995. · Zbl 0853.54002 · doi:10.1007/978-1-4612-0833-4
[14] H. M. Hastings, , Glas. Mat. Ser. III 14(34) (1979), 263-268. · Zbl 0435.34020
[15] L. Kapitanski and I. Rodnianski, Shape and Morse theory of attractors, Comm. Pure Appl. Math. 53 (2000), 218-242. · Zbl 1026.37007 · doi:10.1002/(SICI)1097-0312(200002)53:2<218::AID-CPA2>3.3.CO;2-N
[16] D. Li, J. Wang and Y. Xiong, Attractors of local semiflows on topological spaces, J. Korean Math. Soc. 54 (2017), 773-791. · Zbl 1379.37031 · doi:10.4134/JKMS.j160214
[17] S. Mardešić, Shapes for topological spaces, General Topology and Appl. 3 (1973), 265-282. · Zbl 0269.55008
[18] M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces, Fund. Math. 145 (1994), 15-37. · Zbl 0870.54043
[19] V. V. Nemytskii and V. V. Stepanov, Kacestvennaya teoriya differencial’nyh urovnenii, OGIZ, Moscow, 1947, Qualitative theory of differential equations, Princeton University Press, Princeton, 1960.
[20] S. Y. Pilyugin, Introduction to structurally stable systems of differential equations, Birkhaüser Verlag, 1992. · Zbl 0747.34031 · doi:10.1007/978-3-0348-8643-7
[21] J. C. Robinson, Infinite dimensional dynamical systems, Cambridge University Press, Cambridge, 2001. · Zbl 0980.35001 · doi:10.1007/978-94-010-0732-0
[22] J. T.Roggers, The shape of a cross-section of the solution funnel of an ordinary differential equation, IIlinois J. Math. 21 (1977), 420-426. · Zbl 0348.34003
[23] L. Rubin and J. Sanders, Compactly generated shape, General Topology and Appl. 4 (1974), 73-83. · Zbl 0274.55012
[24] J. W. Robbin and D. Salomon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems \(8^* (1988), 375-393\). · Zbl 0682.58040 · doi:10.1017/S0143385700009494
[25] J. J. Sánchez-Gabites, Dynamical systems and shape, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 102 (2008), 127-159. · Zbl 1151.37017 · doi:10.1007/BF03191815
[26] J. M. R. Sanjurjo, A noncontinuous description of the shape category of compacta, Quart. J. Math. Oxford Ser. (2) 40 (1989), 351-359. · Zbl 0697.55012 · doi:10.1093/qmath/40.3.351
[27] J. M. R. Sanjurjo, Shape morphisms and small multivalued maps, Math. Japon. 35 (1990), 713-717. · Zbl 0712.54014
[28] J. M. R. Sanjurjo, Stability, attraction and shape: a topological study of flows, in Topological methods in nonlinear analysis, Juliusz Schauder Cent. Nonlinear Stud., Toruń, 2011, 93-122. · Zbl 1229.37016
[29] J. M. R. Sanjurjo, An intrinsic description of shape, Trans. Amer. Math. Soc. 329 (1992), 625-636. · Zbl 0748.54005 · doi:10.2307/2153955
[30] N. Shekutkovski, One property of components of chain recurrent set, Regul. Chaotic Dyn. 20 (2015), 184-188. · Zbl 1322.54023 · doi:10.1134/S1560354715020069
[31] N. Shekutkovski and M. Shoptrajanov, Intrinsic shape of the chain recurrent set, Topology Appl. 202 (2016), 117-126. · Zbl 1341.54021 · doi:10.1016/j.topol.2015.12.062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.