×

Markov- and Bernstein-type inequalities for Müntz polynomials and exponential sums in \(L_p\). (English) Zbl 0953.41009

The main result of this paper is the following Markov-type inequality for Müntz polynomials. Let \(\Lambda=(\lambda_j)_{j=0}^\infty\) be an increasing sequence of nonnegative real numbers. Suppose \(\lambda_0=0\) and there exists a \(\delta>0\) so that \(\lambda_j\geq\delta j\) for each \(j\). Suppose \(0<a<b\) and \(1\leq p\leq\infty\). Then there exists a constant \(c(a,b,\delta)\) depending only on \(a\), \(b\), and \(\delta\) so that \(\|P^\prime\|_{L_p[a,b]}\leq c(a,b,\delta)(\sum_{j=0}^n\lambda_j)\|P\|_{L_p[a,b]}\) for every \(P\in M_n(\Lambda)\), the linear span of \(\{x^{\lambda_0},x^{\lambda_1},\dots,x^{\lambda_n}\}\) over \(\mathbb{R}\). This is an \(L_p\) analogue of an earlier result of P. B. Borwein and T. Erdélyi [J. Approximation Theory 85, No. 2, 132-139(1996; Zbl 0853.41008)] establishing such an inequality with respect to the sup norm on \([a,b]\) with \(b>a>0\). The origin of Markov-type inequalities for Müntz polynomials is a well-known Newman inequality [D. J. Newman, J. Approximation Theory 18, 360-362 (1976; Zbl 0441.41002)] proved in the case where \([a,b]=[0,1]\), which plays a special role in this theory. Let us note that analogues of this result on \([a,b]\), \(a>0\), cannot be obtained by a simple transformation \(y=\alpha x+\beta\) which does not preserve membership in \(M_n(\Lambda)\) in general.

MSC:

41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
Full Text: DOI

References:

[1] Borwein, P. B.; Erdélyi, T., Upper bounds for the derivative of exponential sums, Proc. Amer. Math. Soc., 123, 1481-1486 (1995) · Zbl 0829.41013
[2] Borwein, P. B.; Erdélyi, T., Polynomials and Polynomials Inequalities (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0840.26002
[3] Borwein, P. B.; Erdélyi, T., The \(L_p\) version of Newman’s inequality for lacunary polynomials, Proc. Amer. Math. Soc., 124, 101-109 (1996) · Zbl 0840.41008
[4] Borwein, P. B.; Erdélyi, T., A sharp Bernstein-type inequality for exponential sums, J. Reine Angew. Math., 476, 127-141 (1996) · Zbl 0851.41011
[5] Borwein, P. B.; Erdélyi, T., Newman’s inequality for Müntz polynomials on positive intervals, J. Approx. Theory, 85, 132-139 (1996) · Zbl 0853.41008
[6] Borwein, P. B.; Erdélyi, T.; Zhang, J., Müntz systems and orthogonal Müntz-Legendre polynomials, Trans. Amer. Math. Soc., 342, 523-542 (1994) · Zbl 0799.41015
[7] Braess, D., Nonlinear Approximation Theory (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0656.41001
[8] DeVore, R. A.; Lorentz, G. G., Constructive Approximation (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0797.41016
[9] Frappier, C., Quelques problèmes extrémaux pour les polynomes et les fonctions entières de type exponentiel (1982), Université de Montreal
[10] Lorentz, G. G., Approximation of Functions (1986), Chelsea: Chelsea New York · Zbl 0643.41001
[11] Lorentz, G. G., Notes on approximation, J. Approx. Theory, 56, 360-365 (1989) · Zbl 0678.41030
[12] Natanson, I. P., Constructive Function Theory (1964), Ungar: Ungar New York · Zbl 0133.31101
[13] Newman, D. J., Derivative bounds for Müntz polynomials, J. Approx. Theory, 18, 360-362 (1976) · Zbl 0441.41002
[14] Schmidt, E., Zur Kompaktheit der Exponentialsummen, J. Approx. Theory, 3, 445-459 (1970) · Zbl 0212.09103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.