×

George Lorentz and inequalities in approximation. (English. Russian original) Zbl 1203.41001

St. Petersbg. Math. J. 21, No. 3, 365-405 (2010); translation from Algebra Anal. 21, No. 3, 1-57 (2009).
This is a survey paper on inequalities in approximation. The themes of the survey are:
(i) Bernstein-type inequalities for exponential sums; (ii) Remez-type inequalities for exponential sums; (iii) Lorentz degree of polynomials; (iv) Markov- and Bernstein-type inequalities for polynomials with constraints; (v) Müntz-type theorems; (vi) Remez-type inequalities and Newman’s product problem; (vii) Multivariate approximation; (viii) Newman’s inequality; (ix) Littlewood polynomials; (x) Inequalities for generalized polynomials; (xi) Markov- and Bernstein-type inequalities for rational functions; (xii) Nikolskiĭ-type inequalities for shift-invariant function spaces; (xiii) Inverse Markov- and Bernstein-type inequalities; (xiv) Ultraflat sequences of unimodular polynomials; (xv) Zeros of polynomials with restricted coefficients.
A list of 138 references is given at the end.

MSC:

41-02 Research exposition (monographs, survey articles) pertaining to approximations and expansions
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
41A63 Multidimensional problems
42A05 Trigonometric polynomials, inequalities, extremal problems
Full Text: DOI

References:

[1] Francesco Amoroso, Sur le diamètre transfini entier d’un intervalle réel, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 885 – 911 (1991) (French, with English summary). · Zbl 0713.41004
[2] V. V. Arestov, Integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 1, 3 – 22, 239 (Russian).
[3] Joseph Bak and Donald J. Newman, Rational combinations of \?^{\?\?}, \?_{\?}\ge 0 are always dense in \?[0,1], J. Approximation Theory 23 (1978), no. 2, 155 – 157. · Zbl 0385.41007
[4] J. Bastero, \?^{\?}-subspaces of stable \?-Banach spaces, 0<\?\le 1, Arch. Math. (Basel) 40 (1983), no. 6, 538 – 544. · Zbl 0503.46015 · doi:10.1007/BF01192821
[5] József Beck, Flat polynomials on the unit circle — note on a problem of Littlewood, Bull. London Math. Soc. 23 (1991), no. 3, 269 – 277. · Zbl 0748.30006 · doi:10.1112/blms/23.3.269
[6] David Benko and Tamás Erdélyi, Markov inequality for polynomials of degree \? with \? distinct zeros, J. Approx. Theory 122 (2003), no. 2, 241 – 248. · Zbl 1027.41010
[7] David Benko, Tamás Erdélyi, and József Szabados, The full Markov-Newman inequality for Müntz polynomials on positive intervals, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2385 – 2391. · Zbl 1016.41008
[8] S. N. Bernstein, Sur la représentation des polynômes positifs, Soobshcheniya Khar’kov. Mat. Obshch. Ser. 2 14 (1915), 227-228.
[9] Frank Beaucoup, Peter Borwein, David W. Boyd, and Christopher Pinner, Multiple roots of [-1,1] power series, J. London Math. Soc. (2) 57 (1998), no. 1, 135 – 147. · Zbl 0922.30004 · doi:10.1112/S0024610798005857
[10] A. Bloch and G. Pólya, On the roots of certain algebraic equations, Proc. London Math. Soc. (2) 33 (1932), 102-114. · JFM 57.0128.03
[11] Enrico Bombieri and Jeffrey D. Vaaler, Polynomials with low height and prescribed vanishing, Analytic number theory and Diophantine problems (Stillwater, OK, 1984) Progr. Math., vol. 70, Birkhäuser Boston, Boston, MA, 1987, pp. 53 – 73. · Zbl 0629.10024
[12] Peter Borwein, Markov’s inequality for polynomials with real zeros, Proc. Amer. Math. Soc. 93 (1985), no. 1, 43 – 47. · Zbl 0564.26003
[13] Peter Borwein, Computational excursions in analysis and number theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 10, Springer-Verlag, New York, 2002. · Zbl 1020.12001
[14] P. Borwein and T. Erdélyi, Markov-Bernstein-type inequalities for classes of polynomials with restricted zeros, Constr. Approx. 10 (1994), no. 3, 411 – 425. · Zbl 0816.41012 · doi:10.1007/BF01212567
[15] Peter Borwein and Tamás Erdélyi, Markov and Bernstein type inequalities in \?_{\?} for classes of polynomials with constraints, J. London Math. Soc. (2) 51 (1995), no. 3, 573 – 588. · Zbl 0826.41017 · doi:10.1112/jlms/51.3.573
[16] Peter Borwein and Tamás Erdélyi, Upper bounds for the derivative of exponential sums, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1481 – 1486. · Zbl 0829.41013
[17] Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. · Zbl 0840.26002
[18] Peter Borwein and Tamás Erdélyi, Müntz spaces and Remez inequalities, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 38 – 42. · Zbl 0814.41013
[19] Peter Borwein and Tamás Erdélyi, Sharp extensions of Bernstein’s inequality to rational spaces, Mathematika 43 (1996), no. 2, 413 – 423 (1997). · Zbl 0869.41010 · doi:10.1112/S0025579300011876
[20] Peter Borwein and Tamás Erdélyi, The full Müntz theorem in \?[0,1] and \?\(_{1}\)[0,1], J. London Math. Soc. (2) 54 (1996), no. 1, 102 – 110. · Zbl 0854.41015 · doi:10.1112/jlms/54.1.102
[21] Peter Borwein and Tamás Erdélyi, Newman’s inequality for Müntz polynomials on positive intervals, J. Approx. Theory 85 (1996), no. 2, 132 – 139. · Zbl 0853.41008 · doi:10.1006/jath.1996.0034
[22] Peter Borwein and Tamás Erdélyi, The \?_{\?} version of Newman’s inequality for lacunary polynomials, Proc. Amer. Math. Soc. 124 (1996), no. 1, 101 – 109. · Zbl 0840.41008
[23] Peter Borwein and Tamás Erdélyi, A sharp Bernstein-type inequality for exponential sums, J. Reine Angew. Math. 476 (1996), 127 – 141. · Zbl 0851.41011
[24] Peter Borwein and Tamás Erdélyi, The integer Chebyshev problem, Math. Comp. 65 (1996), no. 214, 661 – 681. · Zbl 0859.11044
[25] Peter Borwein and Tamás Erdélyi, Generalizations of Müntz’s theorem via a Remez-type inequality for Müntz spaces, J. Amer. Math. Soc. 10 (1997), no. 2, 327 – 349. · Zbl 0864.41014 · doi:10.1090/S0894-0347-97-00225-7
[26] Peter Borwein and Tamás Erdélyi, On the zeros of polynomials with restricted coefficients, Illinois J. Math. 41 (1997), no. 4, 667 – 675. · Zbl 0906.30005
[27] Peter Borwein and Tamás Erdélyi, Pointwise Remez- and Nikolskii-type inequalities for exponential sums, Math. Ann. 316 (2000), no. 1, 39 – 60. · Zbl 0949.41006 · doi:10.1007/s002080050003
[28] Peter Borwein and Tamás Erdélyi, Markov- and Bernstein-type inequalities for polynomials with restricted coefficients, Ramanujan J. 1 (1997), no. 3, 309 – 323. · Zbl 0902.41012 · doi:10.1023/A:1009761214134
[29] P. Borwein and T. Erdélyi, Littlewood-type problems on subarcs of the unit circle, Indiana Univ. Math. J. 46 (1997), no. 4, 1323 – 1346. · Zbl 0930.30005 · doi:10.1512/iumj.1997.46.1435
[30] Peter Borwein and Tamás Erdélyi, Markov-Bernstein type inequalities under Littlewood-type coefficient constraints, Indag. Math. (N.S.) 11 (2000), no. 2, 159 – 172. · Zbl 1011.26010 · doi:10.1016/S0019-3577(00)89074-6
[31] Peter Borwein and Tamás Erdélyi, Lower bounds for the merit factors of trigonometric polynomials from Littlewood classes, J. Approx. Theory 125 (2003), no. 2, 190 – 197. · Zbl 1038.42002 · doi:10.1016/j.jat.2003.11.004
[32] Peter Borwein and Tamás Erdélyi, Nikolskii-type inequalities for shift invariant function spaces, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3243 – 3246. · Zbl 1113.41017
[33] Peter Borwein and Tamás Erdélyi, Lower bounds for the number of zeros of cosine polynomials in the period: a problem of Littlewood, Acta Arith. 128 (2007), no. 4, 377 – 384. · Zbl 1124.41009 · doi:10.4064/aa128-4-5
[34] Peter Borwein, Tamás Erdélyi, and Géza Kós, Littlewood-type problems on [0,1], Proc. London Math. Soc. (3) 79 (1999), no. 1, 22 – 46. · Zbl 1039.11046 · doi:10.1112/S0024611599011831
[35] Peter Borwein, Tamás Erdélyi, and John Zhang, Müntz systems and orthogonal Müntz-Legendre polynomials, Trans. Amer. Math. Soc. 342 (1994), no. 2, 523 – 542. · Zbl 0799.41015
[36] Peter Borwein, Tamás Erdélyi, and John Zhang, Chebyshev polynomials and Markov-Bernstein type inequalities for rational spaces, J. London Math. Soc. (2) 50 (1994), no. 3, 501 – 519. · Zbl 0815.41013 · doi:10.1112/jlms/50.3.501
[37] Peter Borwein, Tamás Erdélyi, and Friedrich Littmann, Polynomials with coefficients from a finite set, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5145 – 5154. · Zbl 1158.30002
[38] P. Borwein, T. Erdélyi, R. Ferguson, and R. Lockhart, On the zeros of cosine polynomials: solution to a problem of Littlewood, Ann. of Math. (2) 167 (2008), no. 3, 1109 – 1117. · Zbl 1186.11045 · doi:10.4007/annals.2008.167.1109
[39] P. B. Borwein, C. G. Pinner, and I. E. Pritsker, Monic integer Chebyshev problem, Math. Comp. 72 (2003), no. 244, 1901 – 1916. · Zbl 1054.11018
[40] David W. Boyd, On a problem of Byrnes concerning polynomials with restricted coefficients, Math. Comp. 66 (1997), no. 220, 1697 – 1703. · Zbl 0893.12004
[41] Dietrich Braess, Nonlinear approximation theory, Springer Series in Computational Mathematics, vol. 7, Springer-Verlag, Berlin, 1986. · Zbl 0656.41001
[42] J. A. Clarkson and P. Erdös, Approximation by polynomials, Duke Math. J. 10 (1943), 5 – 11. · Zbl 0063.00919
[43] B. Conrey, A. Granville, B. Poonen, and K. Soundararajan, Zeros of Fekete polynomials, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 865 – 889 (English, with English and French summaries). · Zbl 1007.11053
[44] Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. · Zbl 0797.41016
[45] Z. Ditzian and D. S. Lubinsky, Jackson and smoothness theorems for Freud weights in \?_{\?}(0<\?\le \infty ), Constr. Approx. 13 (1997), no. 1, 99 – 152. · Zbl 0867.41010 · doi:10.1007/s003659900034
[46] Tamás Erdélyi, The Remez inequality on the size of polynomials, Approximation theory VI, Vol. I (College Station, TX, 1989) Academic Press, Boston, MA, 1989, pp. 243 – 246. · Zbl 0707.41021
[47] T. Erdélyi, Markov-type estimates for certain classes of constrained polynomials, Constr. Approx. 5 (1989), no. 3, 347 – 356. · Zbl 0695.41010 · doi:10.1007/BF01889614
[48] Tamás Erdélyi, Estimates for the Lorentz degree of polynomials, J. Approx. Theory 67 (1991), no. 2, 187 – 198. · Zbl 0759.41003 · doi:10.1016/0021-9045(91)90017-5
[49] Tamás Erdélyi, Bernstein-type inequalities for the derivatives of constrained polynomials, Proc. Amer. Math. Soc. 112 (1991), no. 3, 829 – 838. · Zbl 0753.41011
[50] Tamás Erdélyi, Bernstein and Markov type inequalities for generalized nonnegative polynomials, Canad. J. Math. 43 (1991), no. 3, 495 – 505. · Zbl 0739.41018 · doi:10.4153/CJM-1991-030-3
[51] Tamás Erdélyi, Remez-type inequalities on the size of generalized polynomials, J. London Math. Soc. (2) 45 (1992), no. 2, 255 – 264. · Zbl 0757.41023 · doi:10.1112/jlms/s2-45.2.255
[52] Tamás Erdélyi, Remez-type inequalities and their applications, J. Comput. Appl. Math. 47 (1993), no. 2, 167 – 209. · Zbl 0781.30002 · doi:10.1016/0377-0427(93)90003-T
[53] Tamás Erdélyi, Markov-Bernstein type inequalities for constrained polynomials with real versus complex coefficients, J. Anal. Math. 74 (1998), 165 – 181. · Zbl 0910.41008 · doi:10.1007/BF02819449
[54] Tamás Erdélyi, Markov-type inequalities for constrained polynomials with complex coefficients, Illinois J. Math. 42 (1998), no. 4, 544 – 563. · Zbl 0913.41007
[55] Tamás Erdélyi, Markov- and Bernstein-type inequalities for Müntz polynomials and exponential sums in \?_{\?}, J. Approx. Theory 104 (2000), no. 1, 142 – 152. · Zbl 0953.41009 · doi:10.1006/jath.1999.3437
[56] Tamás Erdélyi, The resolution of Saffari’s phase problem, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 10, 803 – 808 (English, with English and French summaries). · Zbl 0971.30008 · doi:10.1016/S0764-4442(00)01709-2
[57] Tamás Erdélyi, On the zeros of polynomials with Littlewood-type coefficient constraints, Michigan Math. J. 49 (2001), no. 1, 97 – 111. · Zbl 0998.30006 · doi:10.1307/mmj/1008719037
[58] Tamás Erdélyi, How far is an ultraflat sequence of unimodular polynomials from being conjugate-reciprocal?, Michigan Math. J. 49 (2001), no. 2, 259 – 264. · Zbl 1005.30002 · doi:10.1307/mmj/1008719772
[59] Tamás Erdélyi, The phase problem of ultraflat unimodular polynomials: the resolution of the conjecture of Saffari, Math. Ann. 321 (2001), no. 4, 905 – 924. · Zbl 0990.41010 · doi:10.1007/s002080100259
[60] Tamás Erdélyi, Proof of Saffari’s near-orthogonality conjecture for ultraflat sequences of unimodular polynomials, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 7, 623 – 628 (English, with English and French summaries). · Zbl 1003.30002 · doi:10.1016/S0764-4442(01)02116-4
[61] Tamás Erdélyi, The ”full Clarkson-Erdős-Schwartz theorem” on the closure of non-dense Müntz spaces, Studia Math. 155 (2003), no. 2, 145 – 152. · Zbl 1016.30003 · doi:10.4064/sm155-2-4
[62] Tamás Erdélyi, Extremal properties of the derivatives of the Newman polynomials, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3129 – 3134. · Zbl 1039.41009
[63] Tamás Erdélyi, On the real part of ultraflat sequences of unimodular polynomials: consequences implied by the resolution of the phase problem, Math. Ann. 326 (2003), no. 3, 489 – 498. · Zbl 1024.41009 · doi:10.1007/s00208-003-0432-y
[64] Tamás Erdélyi, The ”full Müntz theorem” revisited, Constr. Approx. 21 (2005), no. 3, 319 – 335. · Zbl 1081.41006 · doi:10.1007/s00365-004-0573-6
[65] Tamás Erdélyi, Bernstein-type inequalities for linear combinations of shifted Gaussians, Bull. London Math. Soc. 38 (2006), no. 1, 124 – 138. · Zbl 1087.41013 · doi:10.1112/S0024609305018035
[66] Tamás Erdélyi, Markov-Nikolskii type inequalities for exponential sums on finite intervals, Adv. Math. 208 (2007), no. 1, 135 – 146. · Zbl 1113.41018 · doi:10.1016/j.aim.2006.02.003
[67] Tamás Erdélyi, The Remez inequality for linear combinations of shifted Gaussians, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 3, 523 – 530. · Zbl 1173.41007 · doi:10.1017/S0305004108001849
[68] Tamás Erdélyi, Newman’s inequality for increasing exponential sums, Number theory and polynomials, London Math. Soc. Lecture Note Ser., vol. 352, Cambridge Univ. Press, Cambridge, 2008, pp. 127 – 141. · Zbl 1266.11087 · doi:10.1017/CBO9780511721274.010
[69] T. Erdélyi, Inequalities for exponential sums via interpolation and Turán-type reverse Markov inequalities, Frontiers in interpolation and approximation, Pure Appl. Math. (Boca Raton), vol. 282, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 119 – 144. · Zbl 1194.41021
[70] Tamás Erdélyi, An improvement of the Erdős-Turán theorem on the distribution of zeros of polynomials, C. R. Math. Acad. Sci. Paris 346 (2008), no. 5-6, 267 – 270 (English, with English and French summaries). · Zbl 1156.30006 · doi:10.1016/j.crma.2008.01.020
[71] Tamás Erdélyi, Extensions of the Bloch-Pólya theorem on the number of real zeros of polynomials, J. Théor. Nombres Bordeaux 20 (2008), no. 2, 281 – 287 (English, with English and French summaries). · Zbl 1163.11022
[72] Tamás Erdélyi and William B. Johnson, The ”full Müntz theorem” in \?_{\?}[0,1] for 0<\?<\infty , J. Anal. Math. 84 (2001), 145 – 172. · Zbl 1222.41024 · doi:10.1007/BF02788108
[73] T. Erdélyi and J. Szabados, On polynomials with positive coefficients, J. Approx. Theory 54 (1988), no. 1, 107 – 122. · Zbl 0653.41010 · doi:10.1016/0021-9045(88)90119-0
[74] Paul Nevai, Tamás Erdélyi, and Alphonse P. Magnus, Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J. Math. Anal. 25 (1994), no. 2, 602 – 614. , https://doi.org/10.1137/S0036141092236863 Tamás Erdélyi, Alphonse P. Magnus, and Paul Nevai, Erratum: ”Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials”, SIAM J. Math. Anal. 25 (1994), no. 5, 1461. · Zbl 0805.33013 · doi:10.1137/0525082
[75] Tamás Erdélyi and Paul Nevai, Lower bounds for derivatives of polynomials and Remez type inequalities, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4953 – 4972. · Zbl 0884.33005
[76] Tamás Erdélyi, Attila Máté, and Paul Nevai, Inequalities for generalized nonnegative polynomials, Constr. Approx. 8 (1992), no. 2, 241 – 255. · Zbl 0754.41008 · doi:10.1007/BF01238273
[77] T. Erdélyi and J. Szabados, On a generalization of the Bernstein-Markov inequality, Algebra i Analiz 14 (2002), no. 4, 36 – 53; English transl., St. Petersburg Math. J. 14 (2003), no. 4, 563 – 576. · Zbl 1039.41008
[78] P. Erdös, On extremal properties of the derivatives of polynomials, Ann. of Math. (2) 41 (1940), 310 – 313. · JFM 66.0303.01 · doi:10.2307/1969005
[79] Paul Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291 – 300. · Zbl 0081.00102
[80] P. Erdös and P. Turán, On the distribution of roots of polynomials, Ann. of Math. (2) 51 (1950), 105 – 119. · Zbl 0036.01501 · doi:10.2307/1969500
[81] J. Erőd, Bizonyos polinomok maximumának alsó korlátjáról, Matematikai és Fizikai Lapok 46 (1939), 83-84.
[82] C. Frappier, Quelques problèmes extrémaux pour les polynômes et les fonctions entières de type exponentiel, Ph. D. Dissertation, Univ. Montréal, 1982.
[83] G. Freud, Orthogonal polynomials, Pergamon Press, Oxford, 1971. · Zbl 0226.33014
[84] C. Sinan Güntürk, Approximation by power series with \pm 1 coefficients, Int. Math. Res. Not. 26 (2005), 1601 – 1610. · Zbl 1079.60015 · doi:10.1155/IMRN.2005.1601
[85] G. Halász, Markov-type inequalities for polynomials with restricted zeros, J. Approx. Theory 101 (1999), no. 1, 148 – 155. · Zbl 0943.41005 · doi:10.1006/jath.1999.3363
[86] K. G. Hare and C. J. Smyth, The monic integer transfinite diameter, Math. Comp. 75 (2006), no. 256, 1997 – 2019. · Zbl 1110.11010
[87] Felix Hausdorff, Summationsmethoden und Momentfolgen. I, Math. Z. 9 (1921), no. 1-2, 74 – 109 (German). · JFM 48.2005.01 · doi:10.1007/BF01378337
[88] Loo Keng Hua, Introduction to number theory, Springer-Verlag, Berlin-New York, 1982. Translated from the Chinese by Peter Shiu. · Zbl 0483.10001
[89] M. Kac, On the average number of real roots of a random algebraic equation. II, Proc. London Math. Soc. (2) 50 (1949), 390 – 408. · Zbl 0033.14702 · doi:10.1112/plms/s2-50.5.390
[90] Jean-Pierre Kahane, Sur les polynômes à coefficients unimodulaires, Bull. London Math. Soc. 12 (1980), no. 5, 321 – 342 (French). · Zbl 0443.30005 · doi:10.1112/blms/12.5.321
[91] T. W. Körner, On a polynomial of Byrnes, Bull. London Math. Soc. 12 (1980), no. 3, 219 – 224. · Zbl 0435.30004 · doi:10.1112/blms/12.3.219
[92] Sergei Konyagin, On a question of Pichorides, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 4, 385 – 388 (English, with English and French summaries). · Zbl 0889.42001 · doi:10.1016/S0764-4442(97)80072-9
[93] S. V. Konyagin, On the Littlewood problem, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 2, 243 – 265, 463 (Russian). · Zbl 0493.42004
[94] Sergei V. Konyagin and Vsevolod F. Lev, Character sums in complex half-planes, J. Théor. Nombres Bordeaux 16 (2004), no. 3, 587 – 606 (English, with English and French summaries). · Zbl 1068.43004
[95] Norman Levenberg and Evgeny A. Poletsky, Reverse Markov inequality, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 1, 173 – 182. · Zbl 1074.41007
[96] J. E. Littlewood, On the mean values of certain trigonometric polynomials, J. London Math. Soc. 36 (1961), 307 – 334. , https://doi.org/10.1112/jlms/s1-36.1.307 J. E. Littlewood, On the mean values of certain trigonometric polynomials. II, Illinois J. Math. 6 (1962), 1 – 39. · Zbl 0108.05801
[97] J. E. Littlewood, On the real roots of real trigonometrical polynomials. II, J. London Math. Soc. 39 (1964), 511 – 532. · Zbl 0142.31205 · doi:10.1112/jlms/s1-39.1.511
[98] J. E. Littlewood, On polynomials \sum \(^{n}\)\pm \?^{\?}, \sum \(^{n}\)\?^{\?_{\?}\?}\?^{\?}, \?=\?^{\?\?}, J. London Math. Soc. 41 (1966), 367 – 376. · Zbl 0142.32603 · doi:10.1112/jlms/s1-41.1.367
[99] John E. Littlewood, Some problems in real and complex analysis, D. C. Heath and Co. Raytheon Education Co., Lexington, Mass., 1968. · Zbl 0185.11502
[100] J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation. II, Proc. Cambridge Philos. Soc. 35 (1939), 133-148. · Zbl 0021.03702
[101] A. Kroó and J. Szabados, Constructive properties of self-reciprocal polynomials, Analysis 14 (1994), no. 4, 319 – 339. · Zbl 0819.41006 · doi:10.1524/anly.1994.14.4.319
[102] G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239 – 251. · Zbl 0116.04602 · doi:10.1007/BF01398235
[103] G. G. Lorentz, Notes on approximation, J. Approx. Theory 56 (1989), no. 3, 360 – 365. · Zbl 0678.41030 · doi:10.1016/0021-9045(89)90125-1
[104] G. G. Lorentz, Approximation of functions, 2nd ed., Chelsea Publishing Co., New York, 1986. · Zbl 0643.41001
[105] George G. Lorentz, Manfred v. Golitschek, and Yuly Makovoz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 304, Springer-Verlag, Berlin, 1996. Advanced problems. · Zbl 0910.41001
[106] G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. · Zbl 0848.26001
[107] O. Carruth McGehee, Louis Pigno, and Brent Smith, Hardy’s inequality and the Littlewood conjecture, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 1, 71 – 72. , https://doi.org/10.1090/S0273-0979-1981-14925-9 O. Carruth McGehee, Louis Pigno, and Brent Smith, Hardy’s inequality and the \?\textonesuperior norm of exponential sums, Ann. of Math. (2) 113 (1981), no. 3, 613 – 618. · Zbl 0473.42001 · doi:10.2307/2007000
[108] Idris David Mercer, Unimodular roots of special Littlewood polynomials, Canad. Math. Bull. 49 (2006), no. 3, 438 – 447. · Zbl 1142.30302 · doi:10.4153/CMB-2006-043-x
[109] H. N. Mhaskar, Introduction to the theory of weighted polynomial approximation, Series in Approximations and Decompositions, vol. 7, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. · Zbl 0948.41500
[110] -, When is approximation by Gaussian networks necessarily a linear process? Neural Networks 17 (2004), 989-1001. · Zbl 1084.68104
[111] Hugh L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics, vol. 84, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. · Zbl 0814.11001
[112] C. Müntz, Über den Approximationsatz von Weierstrass, H. A. Schwartz Festschrift, Berlin, 1914.
[113] F. L. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Algebra i Analiz 5 (1993), no. 4, 3 – 66 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 5 (1994), no. 4, 663 – 717. · Zbl 0822.42001
[114] D. J. Newman, Derivative bounds for Müntz polynomials, J. Approximation Theory 18 (1976), no. 4, 360 – 362. · Zbl 0441.41002
[115] Donald J. Newman, Approximation with rational functions, CBMS Regional Conference Series in Mathematics, vol. 41, Conference Board of the Mathematical Sciences, Washington, D.C., 1979. Expository lectures from the CBMS Regional Conference held at the University of Rhode Island, Providence, R.I., June 12 – 16, 1978.
[116] S. M. Nikol\(^{\prime}\)skiĭ, Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables, Trudy Mat. Inst. Steklov., v. 38, Trudy Mat. Inst. Steklov., v. 38, Izdat. Akad. Nauk SSSR, Moscow, 1951, pp. 244 – 278 (Russian).
[117] A. M. Odlyzko and B. Poonen, Zeros of polynomials with 0,1 coefficients, Enseign. Math. (2) 39 (1993), no. 3-4, 317 – 348. · Zbl 0814.30006
[118] P. P. Petrushev and V. A. Popov, Rational approximation of real functions, Encyclopedia of Mathematics and its Applications, vol. 28, Cambridge University Press, Cambridge, 1987. · Zbl 0644.41010
[119] S. K. Pichorides, Notes on trigonometric polynomials, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 84 – 94.
[120] Qazi Ibadur Rahman and Gerhard Schmeisser, Les inégalités de Markoff et de Bernstein, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 86, Presses de l’Université de Montréal, Montreal, QC, 1983 (French). · Zbl 0525.30001
[121] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. · Zbl 1072.30006
[122] E. J. Remez, Sur une propriété extrémale des polynômes de Tchebyscheff, Zap. Nauchn.-Issled. Inst. Mat. i Mekh. Khar’kov. Univ. i Khar’kov. Mat. Obshch. (4) 13 (1936), vyp. 1, 93-95.
[123] Szilárd Gy. Révész, Turán type reverse Markov inequalities for compact convex sets, J. Approx. Theory 141 (2006), no. 2, 162 – 173. · Zbl 1100.41007 · doi:10.1016/j.jat.2006.03.002
[124] Hervé Queffélec and Bahman Saffari, Unimodular polynomials and Bernstein’s inequalities, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 3, 313 – 318 (English, with English and French summaries). · Zbl 0837.30006
[125] Hervé Queffelec and Bahman Saffari, On Bernstein’s inequality and Kahane’s ultraflat polynomials, J. Fourier Anal. Appl. 2 (1996), no. 6, 519 – 582. · Zbl 0874.42001 · doi:10.1007/s00041-001-4043-2
[126] B. Saffari, The phase behaviour of ultraflat unimodular polynomials, Probabilistic and stochastic methods in analysis, with applications (Il Ciocco, 1991) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 372, Kluwer Acad. Publ., Dordrecht, 1992, pp. 555 – 572. · Zbl 0768.30001 · doi:10.1007/978-94-011-2791-2_26
[127] John T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approximation Theory 6 (1972), 354 – 358. Collection of articles dedicated to J. L. Walsh on his 75th birthday, VIII. · Zbl 0259.26012
[128] Eckard Schmidt, Zur Kompaktheit bei Exponentialsummen, J. Approximation Theory 3 (1970), 445 – 454 (German). · Zbl 0212.09103
[129] I. Schur, Untersuchungen über algebraische Gleichungen, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. 1933, 403-428. · JFM 59.0911.02
[130] T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics, vol. 75, Cambridge University Press, Cambridge, 2002. · Zbl 1012.30001
[131] G. Somorjai, A Müntz-type problem for rational approximation, Acta Math. Acad. Sci. Hungar. 27 (1976), no. 1 – 2, 197 – 199. · Zbl 0333.41012 · doi:10.1007/BF01896775
[132] Boris Solomyak, On the random series \sum \pm \?\(^{n}\) (an Erdős problem), Ann. of Math. (2) 142 (1995), no. 3, 611 – 625. · Zbl 0837.28007 · doi:10.2307/2118556
[133] G. Szegő, Bemerkungen zu einem Satz von E. Schmidt uber algebraische Gleichungen, Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. 1934, 86-98. · JFM 60.0061.01
[134] G. Szegő and A. Zygmund, On certain mean values of polynomials, J. Analyse Math. 3 (1954), 225 – 244. · Zbl 0055.30303 · doi:10.1007/BF02803592
[135] Vilmos Totik and Péter P. Varjú, Polynomials with prescribed zeros and small norm, Acta Sci. Math. (Szeged) 73 (2007), no. 3-4, 593 – 611. · Zbl 1174.26013
[136] P. Turan, Über die Ableitung von Polynomen, Compositio Math. 7 (1939), 89 – 95 (German). · JFM 65.0324.01
[137] Paul Turán, On a new method of analysis and its applications, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. With the assistance of G. Halász and J. Pintz; With a foreword by Vera T. Sós; A Wiley-Interscience Publication. · Zbl 0544.10045
[138] Qiang Wu, A new exceptional polynomial for the integer transfinite diameter of [0,1], J. Théor. Nombres Bordeaux 15 (2003), no. 3, 847 – 861 (English, with English and French summaries). · Zbl 1071.11019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.