×

Stabilization of the Timoshenko beam system with restricted boundary feedback controls. (English) Zbl 1381.93086

Summary: This paper concerns with the stabilization of a Timoshenko beam with bounded constraints on boundary feedback controls. Since the resulting controlled system is nonlinear, the weak well-posedness is proven by theories of the nonlinear monotone operators and the optimization. Then, the asymptotical stability of the controlled beam is analyzed by the weak topology, and its exponential stability is also proven by the Lyapunov’s second method. In the end, the numerical experiment indicates that the control design is feasible.

MSC:

93D15 Stabilization of systems by feedback
35L53 Initial-boundary value problems for second-order hyperbolic systems
35Q74 PDEs in connection with mechanics of deformable solids
35Q93 PDEs in connection with control and optimization
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
93C20 Control/observation systems governed by partial differential equations
Full Text: DOI

References:

[1] d’Andréa-Novel, B., Boustany, F., Conrad, F., Rao, B.P.: Feedback stabilization of a hybrid PDE-ODE system: application to an overhead crane. Math. Control Signals Syst. 7, 1-22 (1994) · Zbl 0825.93636 · doi:10.1007/BF01211483
[2] d’Andréa-Novel, B., Coron, J.M.: Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 36, 587-593 (2000) · Zbl 0982.93063 · doi:10.1016/S0005-1098(99)00182-X
[3] Balakirshinan, A. V., On superstability of semigroups, 12-19 (1999), London · Zbl 0928.93050
[4] Balakirshinan, A.V.: Superstability of systems. Appl. Math. Comput. 164, 321-326 (2005) · Zbl 1123.93315 · doi:10.1016/j.amc.2004.06.052
[5] Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations. Oxford University Press, New York (1998) · Zbl 0926.35049
[6] Chentouf, B.: Boundary feedback stabilization of a variant of the SCOLE model. J. Dyn. Control Syst. 9(2), 201-232 (2003) · Zbl 1029.93039 · doi:10.1023/A:1023285605469
[7] Dafermos, C.M., Slemrod, M.: Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13, 97-106 (1973) · Zbl 0267.34062 · doi:10.1016/0022-1236(73)90069-4
[8] Feng, D., Zhang, W.: Nonlinear feedback control of Timoshenko beam. Sci. China Ser. A 38(8), 918-927 (1995) · Zbl 0834.93023
[9] Haraux, A.: Nonlinear Evolution Equations: Global Behavior of Solutions. Lecture Notes in Mathematics, vol. 841. Springer, New York (1981) · Zbl 0461.35002
[10] He, W., Zhang, S., Ge, S.S.: Boundary output-feedback stabilization of a Timoshenko beam using disturbance observer. IEEE Trans. Ind. Electron. 60(11), 5186-5194 (2013) · doi:10.1109/TIE.2012.2219835
[11] Kim, J.U., Renardy, Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25, 1417-1429 (1987) · Zbl 0632.93057 · doi:10.1137/0325078
[12] Kömura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19, 493-507 (1967) · Zbl 0163.38302 · doi:10.2969/jmsj/01940493
[13] Li, F., Sun, Z.: A finite difference scheme for solving the Timoshenko beam equations with boundary feedback. J. Comput. Appl. Math. 200, 606-627 (2007) · Zbl 1107.74049 · doi:10.1016/j.cam.2006.01.018
[14] Liu, D., Xu, G.: Riesz basis and stability properties for the feedback controlled networks of 1-D wave equations. WSEAS Trans. Math. 5(11), 434-455 (2012)
[15] Morgül, Ö.: Dynamic boundary control of the Timoshenko beam. Automatica 28(6), 1255-1260 (1992) · Zbl 0775.93108 · doi:10.1016/0005-1098(92)90070-V
[16] Shang, Y., Liu, D., Xu, G.: Super-stability and spectrum of one dimensional wave equations on general feedback controlled networks. IMA J. Math. Control Inf. 31(1), 73-99 (2014) · Zbl 1417.93143 · doi:10.1093/imamci/dnt003
[17] Slemrod, M.: Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control. Math. Control Signals Syst. 2, 265-285 (1989) · Zbl 0676.93057 · doi:10.1007/BF02551387
[18] Slemrod, M.: Weak asymptotic decay via a “relaxed invariance principle” for a wave equation with nonlinear, non-monotone damping. Proc. R. Soc. Edinb. 113A, 87-97 (1989) · Zbl 0699.35023 · doi:10.1017/S0308210500023970
[19] Timoshenko, S.: Vibration Problems in Engineering. Van Norstrand, New York (1955) · Zbl 0201.27501
[20] Vu, Q.P., Wang, J.M., Xu, G.Q., Yung, S.P.: Spectral analysis and system of fundamental solutions for Timoshenko beams. Appl. Math. Lett. 18, 127-134 (2005) · Zbl 1070.74020 · doi:10.1016/j.aml.2004.09.001
[21] Wang, J.M., Guo, B.Z.: Riesz basis and stabilization for the flexible structure of a symmetric tree-shaped beam network. Math. Methods Appl. Sci. 31(3), 289-314 (2008) · Zbl 1282.93211 · doi:10.1002/mma.909
[22] Xu, G.Q., Feng, D.X.: The Riesz basis property of a Timoshenko beam with boundary feedback and application. IMA J. Appl. Math. 67, 357-370 (2002) · Zbl 1136.74343 · doi:10.1093/imamat/67.4.357
[23] Xu, G.Q., Han, Z.J., Yung, S.P.: Riesz basis property of serially connected Timoshenko beams. Int. J. Control 80, 470-485 (2007) · Zbl 1120.93026 · doi:10.1080/00207170601100904
[24] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. III: Variational Methods and Optimization. Springer, New York (1990) · Zbl 0684.47029 · doi:10.1007/978-1-4612-0985-0
[25] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators. Springer, New York (1990) · Zbl 0684.47029 · doi:10.1007/978-1-4612-0985-0
[26] Zhang, F.; Dawson, D. M.; Queiroz, M. S.; Vedagarbha, P., Boundary control of the Timoshenko beam with free-end mass/inertial dynamics, San Diego, California USA · doi:10.1109/CDC.1997.650623
[27] Zietsman, L., van Rensburg, N.F.J., van der Merwe, A.J.: A Timoshenko beam with tip body and boundary damping. Wave Motion 39, 199-211 (2004) · Zbl 1163.74526 · doi:10.1016/j.wavemoti.2003.08.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.