×

Asymptotics and attractors for quasilinear parabolic-hyperbolic systems governing the motions of heavily burdened deformable bodies. (English) Zbl 1339.35052

Summary: This paper surveys recent nonlinear analyses of the motion of deformable solids to which are attached heavy rigid bodies. The deformable solids are described by geometrically exact equations of nonlinear viscoelasticity (of strain-rate type), which form quasilinear parabolic-hyperbolic systems. The main emphasis of this paper is on the treatment of problems in which the ratios of the inertias of the deformable body are small with respect to those of the rigid body. Some of these problems possess rigorous asymptotic expansions in a small inertia parameter with the leading terms of the reduced problems governed not by traditional ordinary differential equations for the rigid body, but by equations with memory. Some of these problems admit attractors with the dimensions of the attractors small when the inertia parameters are small. This paper describes a number of open problems.

MSC:

35B41 Attractors
35B25 Singular perturbations in context of PDEs
35K59 Quasilinear parabolic equations
35Q74 PDEs in connection with mechanics of deformable solids
74D10 Nonlinear constitutive equations for materials with memory
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Antman, S.S.: The paradoxical asymptotic status of massless springs. SIAM J. Appl. Math. 48, 1319-1334 (1988). · Zbl 0661.73018 · doi:10.1137/0148081
[2] Antman, S.S.: Nonlinear Problems of Elasticity. 2nd edn. Springer, New York (2005). · Zbl 1098.74001
[3] Antman, S.S., Lacarbonara, W.: Forced radial motions of nonlinearly viscoelastic shells. J. Elast. 96, 155-190 (2009). · Zbl 1169.74031 · doi:10.1007/s10659-009-9203-7
[4] Antman, S.S., Marlow, R.S., Vlahacos, C.P.: The complicated dynamics of heavy rigid bodies attached to light deformable rods. Q. Appl. Math. 56, 431-460 (1998). · Zbl 0960.74028
[5] Antman, S.S., Seidman, T.I.: Quasilinear hyperbolic-parabolic equations of one-dimensional viscoelasticity. J. Differ. Equ. 124, 132-185 (1996). · Zbl 0844.35021 · doi:10.1006/jdeq.1996.0005
[6] Antman, S.S., Seidman, T.I.: Parabolic-hyperbolic systems governing the spatial motion of nonlinearly viscoelastic rods. Arch. Ration. Mech. Anal. 175, 85-150 (2005). · Zbl 1145.74020 · doi:10.1007/s00205-004-0341-6
[7] Antman, S.S., Ulusoy, S.: The asymptotics of heavily burdened viscoelastic rods. Q. Appl. Math. 70, 437-467 (2012). · Zbl 1250.35022 · doi:10.1090/S0033-569X-2012-01325-0
[8] Antman, S.S., Ulusoy, S.: Global attractors for quasilinear parabolic-hyperbolic equations governing longitudinal motions of nonlinearly viscoelastic rods. Phys. D. 291, 31-44 (2015). · Zbl 1335.37057 · doi:10.1016/j.physd.2014.10.004
[9] Antman, S.S., Ulusoy, S.: Global attractors for quasilinear parabolic-hyperbolic systems governing spatial motions of nonlinearly viscoelastic rods. preparation. · Zbl 1335.37057
[10] Antman, S.S., Wilber, J.P.: The asymptotic problem for the springlike motion of a heavy piston in a viscous gas. Q. Appl. Math. 65, 471-498 (2007). · Zbl 1169.76053 · doi:10.1090/S0033-569X-07-01076-5
[11] Beatty, M.F.: Finite amplitude oscillations of a simple rubber support system. Arch. Ration. Mech. Anal. 83, 195-219 (1983). · Zbl 0534.73026 · doi:10.1007/BF00251508
[12] Bloch, A.M., Titi, E.S.: On the dynamics of rotating elastic beams. New Trends in Systems Theory. Edited by: Conte, G., Perdon, A.M., Wyman, B. Birkhäuser, Boston, 128-135 (1991). · Zbl 0759.73036
[13] Caflisch, R.E., Maddocks, J.H.: Nonlinear dynamical theory of the elastica. Proc. R. Soc. Edinb. 99A, 1-23 (1984). · Zbl 0589.73057 · doi:10.1017/S0308210500025920
[14] Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. Springer, New York (2013). · Zbl 1263.37002 · doi:10.1007/978-1-4614-4581-4
[15] Chepyzhov, V.I., Vishik, M.I.: Attractors for Equations of Mathematical Physics. Amer. Math. Soc., Providence, 2002. · Zbl 0986.35001
[16] Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, 1964. · Zbl 0144.34903
[17] Han, L., et al.: Calibration of tethered particle motion experiments. Mathematics of DNA Structure, Functions and Interactions. Edited by: Benham, C.J. et al. Springer, New York, 123-138 (2009). · Zbl 1270.35122
[18] Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Amer. Math. Soc., Providence, 1968. · Zbl 0174.15403
[19] Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Gauthier-Villars (1969). · Zbl 0189.40603
[20] O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991). · Zbl 0743.34059
[21] Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, NJ (1967). · Zbl 0153.13602
[22] Racke, R., Shang, C.: Global attractors for nonlinear beam equations. Proc. R. Soc. Edinb. 142A, 1087-1107 (2012). · Zbl 1270.35122 · doi:10.1017/S030821051000168X
[23] Smith, D.R.: Singular Perturbation Theory: An Introduction with Applications. University Press, Cambridge (1985). · Zbl 0567.34055
[24] Steiner, W., Schagerl, M.: Raumflugmechanik. Springer, Berlin (2004).
[25] Stoker, J.J.: Nonlinear Vibrations. Interscience, New York (1950). · Zbl 0035.39603
[26] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd edn. Springer, New York (1997). · Zbl 0871.35001 · doi:10.1007/978-1-4612-0645-3
[27] Timoshenko, S.P.: Erzwungene Schwingungen prismatischer Stäbe. Z. Math. Phys. 59, 163-203 (1911). · JFM 42.0886.01
[28] Timoshenko, S.P.: Vibration Problems in Engineering. 3rd. edn. Van Nostrand Reinhold, US (1955). · Zbl 0201.27501
[29] Timoshenko, S.P., Young, D.H.: Advanced Dynamics. McGraw-Hill, 1948. · Zbl 0034.40104
[30] Tvedt, B.: Quasilinear equations for viscoelasticity of strain-rate type. Arch. Ration. Mech. Anal. 189, 237-281 (2008). · Zbl 1147.74008 · doi:10.1007/s00205-007-0109-x
[31] Vasileva, A.B., Butuzov, V.F., Kalachev, L.: The Boundary Function Method for Singular Perturbation Problems. SIAM, 1995. · Zbl 0823.34059
[32] Wiegner, M.: On the asymptotic behaviour of solutions of nonlinear parabolic equations. Math. Z. 188, 3-22 (1984). · Zbl 0538.35043 · doi:10.1007/BF01163868
[33] Wilber, J.P.: Absorbing balls for equations modeling nonuniform deformable bodies with heavy rigid attachments. J. Dyn. Differ. Equ. 14, 855-887 (2002). · Zbl 1019.35020 · doi:10.1023/A:1020716727905
[34] Wilber, J.P.: Invariant manifolds describing the dynamics of a hyperbolic-parabolic equation from nonlinear viscoelasticity. Dyn. Syst. 21, 465-490 (2006). · Zbl 1124.34029 · doi:10.1080/14689360600821828
[35] Wilber, J.P., Antman, S.S.: Global attractors for a degenerate partial differential equations from nonlinear viscoelasticity. Phys. D. 150, 177-206 (2001). · Zbl 0981.35087 · doi:10.1016/S0167-2789(00)00220-7
[36] Yip, S.-C., Antman, S.S., Wiegner, M.: The motion of a particle on a light viscoelastic bar: Asymptotic analysis of the quasilinear parabolic-hyperbolic equation. J. Math. Pures Appl. 81, 283-309 (2002). · Zbl 1134.35397 · doi:10.1016/S0021-7824(01)01227-2
[37] You, Y.: Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping. Abstr. Appl. Anal. 1, 83-102 (1996). · Zbl 0940.35036 · doi:10.1155/S1085337596000048
[38] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. I. Springer, New York (1986). · Zbl 0583.47050 · doi:10.1007/978-1-4612-4838-5
[39] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. II/B. Springer, New York (1990). · Zbl 0684.47029 · doi:10.1007/978-1-4612-0985-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.