×

On the norm groups of global fields. (English) Zbl 0687.12006

Let k be a global field, i.e., an algebraic number field or a function field in one variable over a finite field. In this paper the author studies on classifications of finite Galois extensions K/k by its norm group \(N_{K/k}(K^{\times})=\{N_{K/k}(\alpha)|\) \(\alpha \in K^{\times}\}\) in comparison with the local case.
Let K and L be finite Galois extensions of k. Then the author first proves by a cohomological method using class field theory that \(K\subseteq L\) if and only if \(N_{K/k}(K^{\times})\subseteq N_{L/k}(L^{\times})\); in particular, \(K=L\) if and only if \(N_{K/k}(K^{\times})=N_{L/k}(L^{\times})\). Applying this result to decomposable forms, he also proves that there is a subfamily of irreducible (over k) decomposable forms such that \(f(x_ 1,...,x_ n)\) and \(g(x_ 1,...,x_ n)\) are equivalent over k if and only if \(\{f(a_ 1,...,a_ n)|\) \(a_ i\in k\}=\{g(b_ 1,...,b_ n)|\) \(b_ i\in k\}.\)
He next investigates the condition \(N_{F/k}(F^{\times})=N_{K/k}(K^{\times})\cap N_{L/k}(L^{\times})\) for \(F=K \cdot L\supset k\), and defines Property I as follows: A finite Galois extension E/k has Property I, if for any Galois extensions \(k\subseteq K \cdot L\subseteq E\) of k the equality \(N_{F/k}(F^{\times})=N_{K/k}(K^{\times})\cap N_{L/k}(L^{\times})\) holds, where \(F=K\cdot L.\) Under this definition he proves that a finite abelian extension E/k has Property I if and only if the Hasse principle holds for E/k.
Reviewer: T.Takeuchi

MSC:

11R37 Class field theory
Full Text: DOI

References:

[1] Artin, E.; Tate, J., (Class Field Theory (1967), Benjamin: Benjamin New York)
[2] Borevich, Z. I.; Shafarevich, I. R., (Number Theory (1966), Academic Press: Academic Press New York) · Zbl 0145.04902
[3] Cassels, J. W.S.; Fröhlich, A., (Algebraic Number Theory (1967), Thompson: Thompson Washington, DC) · Zbl 0153.07403
[4] Gassmann, F., Bemerkungen zu der vorstehenden Arbeit von Hurwitz, Math. Z., 25, 665-675 (1926) · JFM 52.0156.03
[5] Gurak, S., On the Hasse norm principle, J. Reine Angew. Math., 299/300, 16-27 (1978) · Zbl 0367.12006
[6] Jehne, W., On knots in algebraic number theory, J. Reine Angew. Math., 311/312, 215-254 (1979) · Zbl 0432.12006
[7] Lorenz, F., Zur Theorie der Normenreste, J. Reine Angew. Math., 334, 157-170 (1982) · Zbl 0477.12008
[8] Neukirch, J., Kennzeichnung der \(p\)-adischen und der endlichen algebraischen zahlkörper, Invent. Math., 6, 296-314 (1969) · Zbl 0192.40102
[9] Neukirch, J., (Klassenkörpertheorie (1969), Mannheim: Mannheim Hochschultaschenbücher-Verlag), Bibliographisches Institut · Zbl 0199.37502
[10] Perlis, R., On the equation \(ζ_K(s) = ζ_{K′}(s)\), J. Number Theory, 9, 342-360 (1977) · Zbl 0389.12006
[11] Schacher, M., Subfields of division rings I, J. Algebra, 9, 451-477 (1968) · Zbl 0174.34103
[12] Serre, J. P., (Local Fields (1979), Springer-Verlag: Springer-Verlag New York) · Zbl 0423.12016
[13] Sonn, J., On equivalence of number fields, Israel J. Math., 52, 239-244 (1985) · Zbl 0592.12006
[14] Stern, L., On the admissibility of finite groups over global fields of finite characteristic, J. Algebra, 100, 344-362 (1986) · Zbl 0588.16012
[15] Tannaka, T., On the normal form of cohomology groups, J. Math. Soc. Japan, 6, 16-31 (1954) · Zbl 0058.01601
[16] Uchida, K., Isomorphisms of Galois groups, J. Math. Soc. Japan, 28, 617-620 (1976) · Zbl 0329.12013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.