×

On the homotopy theory of stratified spaces. (Sur la théorie homotopique des espaces stratifiés.) (English. French summary) Zbl 07839895

In classical algebraic topology it was shown that there is an equivalence between the homotopy theory of topological spaces and that of simplicial sets. That gave more combinatorial and algebraic tools in the study of homotopy theory of spaces. The paper under review tries to develop a similar theory for stratified spaces.
Let \(P\) be a poset. Write \(\mathbf{Top}^{ex}_{/P} \) for the full subcategory of those \(P\)-stratified topological spaces \(T\) for which Lurie’s exit-path simplicial set \(\text{Sing}_P(T)\) is a quasicategory. The \(\infty\)-categories that arise in this way have a special property that the fibers of the structure morphism to \(P\) are given by the fundamental \(\infty\)-groupoids of the strata. In particular, every morphism in each fiber is invertible. Equivalently, the structure morphism is a conservative functor. Let \(W^P\) denote the class of morphisms that induce \(P\)-weak homotopy equivalences on all strata and topological links. Equivalently, \(W^P\) is the class of morphisms that are sent to equivalences in the Joyal-Kan model structure under \(\text{Sing}_P\). Actually they are morphisms that induce weak homotopy equivalences on strata and on their links. Furthermore the morphisms are Douteau-Henriques equivalences and their image under \(\text{Sing}_P\) is an equivalence when regarded as a morphism in the \(\infty\)-category \(\mathbf{Str}_P\). Then there is an equivalence of the localization \(\mathbf{Top}^{ex}_{/P} [W_P^{-1}]\) and the category \(\mathbf{Str}_P\). Here \(\mathbf{Str}_P\) is the \(\infty\)-category of \(\infty\)-categories over (the nerve) of \(P\) where the structure morphism is conservative. That provides a positive answer to a conjecture of Ayala-Francis-Rozenblyum [D. Ayala et al., J. Eur. Math. Soc. (JEMS) 21, No. 4, 1071–1178 (2019; Zbl 1445.57019)]. In particular the results holds for conically topological stratified spaces like Whitney stratified spaces and stratified spaces in the sense of Goresky-MacPherson,
As a consequence of the main result the author gets that the \(\infty\)-category \(\mathbf{Str}_P\) is equivalent to an \(\omega\)-accessible localization of the underlying \(\infty\)-category of the combinatorial simplicial model category \(\mathbf{Top}_P\) in the Douteau-Henriques model structure.

MSC:

55U35 Abstract and axiomatic homotopy theory in algebraic topology
57N80 Stratifications in topological manifolds
18N40 Homotopical algebra, Quillen model categories, derivators

Citations:

Zbl 1445.57019

References:

[1] M. Artin, B. Mazur, Étale homotopy, Lecture Notes in Math. 100, Springer, 1969. · Zbl 0182.26001
[2] D. Ayala, J. Francis, Poincaré/Koszul duality, Comm. Math. Phys. 365 (2019), 847-933. · Zbl 1432.57060
[3] D. Ayala, J. Francis, N. Rozenblyum, A stratified homotopy hypothesis, J. Eur. Math. Soc. (JEMS) 21 (2019), 1071-1178. · Zbl 1445.57019
[4] D. Ayala, J. Francis, H. L. Tanaka, Factorization homology of stratified spaces, Selecta Math. (N.S.) 23 (2017), 293-362. · Zbl 1365.57037
[5] D. Ayala, J. Francis, H. L. Tanaka, Local structures on stratified spaces, Adv. Math. 307 (2017), 903-1028. · Zbl 1367.57015
[6] S. Balchin, A handbook of model categories, Algebra and Applications, Springer, 2021. · Zbl 1486.18001
[7] C. Barwick, On left and right model categories and left and right Bousfield localiza-tions, Homology Homotopy Appl. 12 (2010), 245-320. · Zbl 1243.18025
[8] C. Barwick, Spectral Mackey functors and equivariant algebraic K-theory (I), Adv. Math. 304 (2017), 646-727. · Zbl 1348.18020
[9] C. Barwick, S. Glasman, P. Haine, Exodromy, preprint arXiv:1807.03281.
[10] C. Barwick, J. Shah, Fibration in 1-category theory, in 2016 MATRIX annals, MATRIX Book Ser. 1, Springer, 2018, 17-42. · Zbl 1448.18031
[11] M. Batanin, D. White, Left Bousfield localization without left properness, preprint arXiv:2001.03764.
[12] D.-C. Cisinski, Higher categories and homotopical algebra, Cambridge Studies in Advanced Math. 180, Cambridge Univ. Press, 2019. · Zbl 1430.18001
[13] S. Douteau, Étude homotopique des espaces stratifiés, Ph.D. Thesis, Université de Picardie Jules Verne, 2019.
[14] S. Douteau, Homotopy theory of stratified spaces, Algebr. Geom. Topol. 21 (2021), 507-541. · Zbl 1469.55014
[15] S. Douteau, A simplicial approach to stratified homotopy theory, Trans. Amer. Math. Soc. 374 (2021), 955-1006. · Zbl 1472.55014
[16] S. Douteau, A stratified Kan-Quillen equivalence, preprint arXiv:2102.04876.
[17] D. Dugger, Notes on Delta-generated spaces, preprint ncatlab.org/nlab/files/ DuggerDeltaGenerated.pdf.
[18] L. Fajstrup, J. Rosický, A convenient category for directed homotopy, Theory Appl. Categ. 21 (2008), 7-20. · Zbl 1157.18003
[19] E. M. Friedlander, Étale homotopy of simplicial schemes, Annals of Math. Studies 104, Princeton Univ. Press, N.J.; University of Tokyo Press, Tokyo, 1982. · Zbl 0538.55001
[20] M. Goresky, R. MacPherson, Intersection homology. II, Invent. math. 72 (1983), 77-129. · Zbl 0529.55007
[21] A. Grothendieck, Brief an G. Faltings, in Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser. 242, Cambridge Univ. Press, 1997, 49-58. · Zbl 0901.14002
[22] T. Haraguchi, A homotopy theory of diffeological and numerically generated spaces, Ph.D. Thesis, Graduate School of Natural Science and Technology, Okayama University, 2013.
[23] T. Haraguchi, On model structure for coreflective subcategories of a model category, Math. J. Okayama Univ. 57 (2015), 79-84. · Zbl 1311.55027
[24] A. Henriques, Orbispaces, Ph.D. Thesis, Massachusetts Institute of Technology, 2005.
[25] A. Henriques, A model category for stratified spaces, preprint andreghenriques. com/PDF/Model_Cat_Stratified_spaces.pdf.
[26] S. Henry, Combinatorial and accessible weak model categories, preprint arXiv:2005.02360.
[27] A. Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002), 207-222. · Zbl 1015.18008
[28] A. Joyal, M. Tierney, Quasi-categories vs Segal spaces, in Categories in algebra, geometry and mathematical physics, Contemp. Math. 431, Amer. Math. Soc., 2007, 277-326.
[29] D. M. Kan, On c.s.s. complexes, Amer. J. Math. 79 (1957), 449-476. · Zbl 0078.36901
[30] D. M. Kan, On the homotopy relation for c.s.s. maps, Bol. Soc. Mat. Mexicana 2 (1957), 75-81. · Zbl 0089.39102
[31] D. M. Kan, A combinatorial definition of homotopy groups, Ann. of Math. 67 (1958), 282-312. · Zbl 0091.36901
[32] D. M. Kan, On homotopy theory and c.s.s. groups, Ann. of Math. 68 (1958), 38-53. · Zbl 0091.36902
[33] D. M. Kan, A relation between CW-complexes and free c.s.s. groups, Amer. J. Math. 81 (1959), 512-528. · Zbl 0109.16201
[34] ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
[35] J. Lurie, Higher topos theory, Annals of Math. Studies 170, Princeton Univ. Press, 2009. · Zbl 1175.18001
[36] J. Lurie, Higher algebra, preprint math.ias.edu/ lurie/papers/HA.pdf, 2017.
[37] S. Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Math. 5, Springer, 1998. · Zbl 0906.18001
[38] J. Mather, Notes on topological stability, Bull. Amer. Math. Soc. (N.S.) 49 (2012), 475-506. · Zbl 1260.57049
[39] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, 1999. · Zbl 0923.55001
[40] D. A. Miller, Homotopy theory for stratified spaces, Ph.D. Thesis, University of Aberdeen, 2010.
[41] D. A. Miller, Strongly stratified homotopy theory, Trans. Amer. Math. Soc. 365 (2013), 4933-4962. · Zbl 1279.55007
[42] J. Neukirch, Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galois-gruppe der maximal auflösbaren Erweiterungen, J. reine angew. Math. 238 (1969), 135-147. · Zbl 0201.05901
[43] J. Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, Invent. math. 6 (1969), 296-314. · Zbl 0192.40102
[44] G. Nocera, M. Volpe, Whitney stratifications are conically smooth, preprint arXiv:2105.09243.
[45] D. G. Quillen, Homotopical algebra, Lecture Notes in Math. 43, Springer, 1967. · Zbl 0168.20903
[46] F. Quinn, Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988), 441-499. · Zbl 0655.57010
[47] C. Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001), 973-1007. · Zbl 0961.18008
[48] E. Riehl, Categorical homotopy theory, New Mathematical Monographs 24, Cambridge Univ. Press, 2014. · Zbl 1317.18001
[49] K. Shimakawa, K. Yoshida, T. Haraguchi, Homology and cohomology via enriched bifunctors, Kyushu J. Math. 72 (2018), 239-252. · Zbl 1408.55003
[50] R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-284. · Zbl 0197.20502
[51] D. Treumann, Exit paths and constructible stacks, Compos. Math. 145 (2009), 1504-1532. · Zbl 1185.32022
[52] K. Uchida, Isomorphisms of Galois groups, J. Math. Soc. Japan 28 (1976), 617-620. · Zbl 0329.12013
[53] J. Wo olf, The fundamental category of a stratified space, J. Homotopy Relat. Struct. 4 (2009), 359-387. (Manuscrit reçu le 6 septembre 2019 ; accepté le 26 avril 2022.) · Zbl 1204.18008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.