×

“Shafarevich-Tate sets” for profinite groups. (English) Zbl 0997.20036

From the text: Let \(G\) be a topological group. By a cocycle of \(G\) we mean a continuous map \(f\colon G\to G\) such that \(f(st)=f(s)f(t)^s\), with \(a^s=sas^{-1}\), \(s,t\in G\), \(a\in G\). We denote by \(Z(G)\) the set of all cocycles. Two cocycles \(f\), \(f'\) are equivalent, written \(f\sim f'\), if there is an \(a\in G\) such that (*) \(f(s)=a^{-1}f'(s)a^s\), \(s\in G\). Cocycles \(f\), \(f'\) are locally equivalent, written \(f\underset\text{loc}\sim f'\), if there is an \(a_s\in G\) for each \(s\in G\) such that \(f(s)=a_s^{-1}f'(s)a_s^s\). Two subsets \(B(G)\), \(B_{\text{loc}}(G)\) of \(Z(G)\) are defined by \[ B(G)=\{f\in Z(G);\;f\sim 1\},\qquad B_{\text{loc}}(G)=\{f\in Z(G);\;f\underset\text{loc}\sim 1\}, \] respectively, where 1 denotes the constant function on \(G\) of value \(1_G\). A cocycle in \(B(G)\) is a coboundary and one in \(B_{\text{loc}}(G)\) is a local coboundary. Clearly a coboundary is a local coboundary: \(B(G)\subset B_{\text{loc}}(G)\). The Shafarevich-Tate set \(\text{ Ш}(G)\) is the quotient of \(B_{\text{loc}}(G)\) with respect to the equivalence (*). \(B(G)\) forms a distinguished point in \(\text{ Ш}(G)\). When \(\text{ Ш}(G)=1\), i.e. \(B_{\text{loc}}(G)=B(G)\), we say that \(G\) enjoys the “Hasse principle”.
Here, the author proves: Theorem. Let \(G\) be a profinite group. Then there is a bijection \[ \text{ Ш}(G)\approx\operatorname{Aut}_c(G)/\text{Inn}(G). \] In particular, \(\text{ Ш}(G)\) gets a group structure.
Now let \(K\) be a finite Galois extension over \(\mathbb{Q}\) and \(G_K=\text{Gal}(\overline\mathbb{Q}/K)\). Then celebrated results due to Neukirch, Ikeda, Iwasawa and Uchida tell us that there is an isomorphism \[ \operatorname{Aut}(G_K)/\text{Inn}(G_K)\approx\text{Gal}(K/\mathbb{Q}). \] Combining this with the theorem it follows that the Shafarevich-Tate group \(\text{ Ш}(G_K)\) can be embedded in the finite group \(\text{Gal}(K/\mathbb{Q})\). In particular, \(\text{ Ш}(G_\mathbb{Q})=1\), i.e., the full Galois group \(G_\mathbb{Q}=\text{Gal}(\overline\mathbb{Q}/\mathbb{Q})\) enjoys the Hasse principle.

MSC:

20E18 Limits, profinite groups
20E36 Automorphisms of infinite groups
22A10 Analysis on general topological groups
Full Text: DOI

References:

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson: An ATLAS of Finite Groups. Clarendon Press, Oxford (1985). · Zbl 0568.20001
[2] M. Ikeda: Completeness of the absolete Ga- lois group of the rational numbr field. J. Reine Angew. Math., 291 , 1-22 (1977). · Zbl 0366.12008 · doi:10.1515/crll.1977.291.1
[3] J. Lehner: Discontinuous groups and automorphic functions. AMS, Providence, Rhode Island (1964). · Zbl 0178.42902
[4] J. Neukirch: Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper. Invent. Math., 6 , 296-314 (1969). · Zbl 0192.40102 · doi:10.1007/BF01425420
[5] T. Ono: A note on Shafarevich-Tate sets of finite groups. Proc. Japan Acad., 74A , 77-79 (1998). · Zbl 1001.11042 · doi:10.3792/pjaa.74.77
[6] T. Ono: “Hasse principle” for \(PSL_2({\mathbf Z})\) and \(PSL_2({\mathbf F}_p)\). Proc. Japan Acad., 74A , 130-131 (1998). · Zbl 0926.11025 · doi:10.3792/pjaa.74.130
[7] T. Ono and H. Wada: “Hasse principle” for free groups. Proc. Japan Acad., 75A , 1-2 (1999). · Zbl 0928.20022 · doi:10.3792/pjaa.75.1
[8] T. Ono: On Shafarevich-Tate sets. The 7th MSJ Int. Res. Inst. Class Field Theory-its centenary and prospect (to appear). · Zbl 0852.11055
[9] T. Ono and H. Wada: “Hasse principle” for symmetric and alternating groups. Proc. Japan Acad., 75A , 61-62 (1999). · Zbl 0948.20001 · doi:10.3792/pjaa.75.61
[10] H. Wada: “Hasse principle” for \(SL_n(D)\). Proc. Japan Acad., 75A , 67-69 (1999). · Zbl 1041.11025 · doi:10.3792/pjaa.75.67
[11] K. Uchida: Isomorphisms of Galois groups of algebraic number fields, Algebraic number theory-Kyoto Int. Symp., 1976. Japan Soc. Prom. Sci. (ed. S. Iyanaga). pp. 263-266 (1977). · Zbl 0363.12008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.