×

Hecke algebra isomorphisms and adelic points on algebraic groups. (English) Zbl 1418.11093

Summary: Let \(G\) denote a linear algebraic group over \(\mathbb{Q}\) and \(K\) and \(L\) two number fields. We establish conditions on the group \(G\), related to the structure of its Borel groups, under which the existence of a group isomorphism \(G(\mathbb{A}_{K,f}) \cong G(\mathbb{A}_{L,f})\) over the finite adeles implies that \(K\) and \(L\) have isomorphic adele rings. Furthermore, if \(G\) satisfies these conditions, \(K\) or \(L\) is a Galois extension of \(\mathbb{Q}\), and \(G(\mathbb{A}_{K,f}) \cong G(\mathbb{A}_{L,f})\), then \(K\) and \(L\) are isomorphic as fields.
We use this result to show that if for two number fields \(K\) and \(L\) that are Galois over \(\mathbb{Q}\), the finite Hecke algebras for \(\mathrm{GL}(n)\) (for fixed \(n \geq 2\)) are isomorphic by an isometry for the \(L^1\)-norm, then the fields \(K\) and \(L\) are isomorphic. This can be viewed as an analogue in the theory of automorphic representations of the theorem of Neukirch that the absolute Galois group of a number field determines the field, if it is Galois over \(\mathbb{Q}\).

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11R56 Adèle rings and groups
20C08 Hecke algebras and their representations
20G35 Linear algebraic groups over adèles and other rings and schemes
22D20 Representations of group algebras

References:

[1] Sivaramakrishna Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, Sur les groupes algébriques, Bull. Soc. Math. France, Mém. vol. 33, Soc. Math. France, Paris, 1973, pp. 5-79. · Zbl 0286.14001
[2] Athanasios Angelakis and Peter Stevenhagen, Imaginary quadratic fields with isomorphic abelian galois groups, ANTS X: Proceedings of the Tenth Algorithmic Number Theory Symposium (eds. Everett W. Howe and Kiran S. Kedlaya), The Open Book Series, vol. 1, MSP, Berkeley, 2013, pp. 21-39. · Zbl 1344.11072
[3] Armand Borel, Linear algebraic groups, second ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[4] Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), pp. 55-150.
[5] John W. S. Cassels, Local Fields, London Mathematical Society Student Texts, vol. 3, Cambridge University Press, Cambridge, 1986. · Zbl 0595.12006
[6] Yu Chen, Isomorphisms of adjoint Chevalley groups over integral domains, Trans. Amer. Math. Soc., 348 (1996), pp. 521-541. · Zbl 0848.20035
[7] Brian Conrad, Ofer Gabber, and Gopal Prasad, Pseudo-reductive groups, second ed., New Mathematical Monographs, vol. 26, Cambridge University Press, Cambridge, 2015. · Zbl 1314.20037
[8] Gunther Cornelissen and Matilde Marcolli, Quantum statistical mechanics, L-series and anabelian geometry , arXiv:1009.0736, preprint (2010). · Zbl 1329.82007
[9] Fritz Gaßmann, Bemerkungen zur Vorstehenden Arbeit von Hurwitz: Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppen. , Math. Z. 25 (1926), pp. 661(665)-675. · JFM 52.0156.03
[10] Alexander Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967). · Zbl 0153.22301
[11] Helmut Hasse, Zahlentheorie, Dritte berichtigte Auflage, Akademie-Verlag, Berlin, 1969. · Zbl 1038.11501
[12] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. · Zbl 1044.55001
[13] Edwin Hewitt and Karl Stromberg, Real and abstract analysis, third ed., Graduate Texts in Mathematics, vol. 25, Springer-Verlag, New York-Heidelberg, 1975. · Zbl 0307.28001
[14] Kenkichi Iwasawa, On the rings of valuation vectors, Ann. of Math. (2) 57 (1953), pp. 331-356. · Zbl 0053.35603
[15] Irving Kaplansky, Fields and Rings, Chicago Lectures in Mathematics, The University of Chicago Press, 1969.
[16] Valentijn Karemaker, Hecke algebras for \(\text{GL}_n\) over local fields, Arch. d. Math. 107, nr. 4, pp. 341-353. · Zbl 1466.20005
[17] Yukiyosi Kawada, On the group ring of a topological group, Math. Japonicae 1 (1948), pp. 1-5. · Zbl 0041.36303
[18] Norbert Klingen, Arithmetical similarities: Prime decomposition and finite group theory, Oxford Mathematical Monographs, Oxford University Press, 1998. · Zbl 0896.11042
[19] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions , American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence , RI, 1998. · Zbl 0955.16001
[20] Keiichi Komatsu, On adèle rings of arithmetically equivalent fields, Acta Arith. 43 (1984), no. 2, pp. 93-95. · Zbl 0527.12010
[21] Manfred Lochter, Arithmetische Ähnlichkeiten zwischen globalen Körpern positiver Characteristik , Diplomarbeit Universität Köln (1989).
[22] Oliver Lorscheid and Cecília Salgado, Schemes as functors on topological rings, J. Number Theory 159 (2016), pp. 193-201. · Zbl 1337.14002
[23] William Massey, Singular homology theory, Graduate Texts in Mathematics vol. 70, Springer-Verlag, New York-Berlin, 1980. · Zbl 0442.55001
[24] James S. Milne, Basic theory of affine group schemes, 2012, available at www.jmilne.org/math/.
[25] James S. Milne, Lie Algebras, Algebraic Groups, and Lie Groups, 2013, available at www.jmilne,org/math/.
[26] Jürgen Neukirch, Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkörper, Invent. Math. 6 (1969), pp. 296-314. · Zbl 0192.40102
[27] Jürgen Neukirch, Alexander Schmidt and Kay Wingberg, Cohomology of Number Fields, Grundl. Math. Wiss. vol. 323, Springer-Verlag, Berlin, 2000. · Zbl 0948.11001
[28] Joseph Oesterlé, Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math. 78 (1984), pp. 13-88. · Zbl 0542.20024
[29] Midori Onabe, On the isomorphisms of the Galois groups of the maximal abelian extensions of imaginary quadratic fields, Natur. Sci. Rep. Ochanomizu Univ. 27 (1976), no. 2, pp. 155-161, available from http://ci.nii.a c.jp. · Zbl 0354.12004
[30] Robert Perlis, On the equation {\(ζ_K(s)=ζ_{K'}(s)\)} · Zbl 0389.12006
[31] Vasilij M. Petechuk, Automorphisms of matrix groups over commutative rings, Mat. Sb. (N.S.) 117 (1982), pp. 534- 547. · Zbl 0496.20026
[32] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, 1994. · Zbl 0841.20046
[33] Bjorn Poonen, Rational points on varieties, 2015, available at http://math.mit.edu/ poonen/. · Zbl 1387.14004
[34] Joseph J. Rotman, An introduction to homological algebra, second ed., Universitext, Springer, New York, 2009. · Zbl 1157.18001
[35] Jean-Pierre Serre, Galois Cohomology, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1997.
[36] Otto Schreier and Bartel L. van der Waerden, Die Automorphismen der projektiven Gruppen, Abh. Math. Sem. Univ. Hamburg 9 (1928), pp. 303-322. · JFM 54.0149.02
[37] Carl Ludwig Siegel, Generalization of Waring’s problem to algebraic number fields, Amer. J. Math. 66 (1944), pp. 122-136. · Zbl 0063.07008
[38] Tonny A. Springer, Linear algebraic groups, second ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, 1998. · Zbl 1024.17018
[39] Kôji Uchida, Isomorphisms of Galois groups, J. Math. Soc. Japan 28 (1976), no. 4, pp. 617-620. · Zbl 0329.12013
[40] Steven Weintraub, Fundamentals of algebraic topology, Graduate Texts in Mathematics, vol. 270, Springer, New York, 2014. · Zbl 1305.55001
[41] James G. Wendel, On isometric isomorphism of group algebras, Pacific J. Math. 1 (1951), pp. 305-311 · Zbl 0043.03102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.