×

Additive structure of totally positive quadratic integers. (English) Zbl 1450.11113

The multiplicative structure of the ring of integers \(O_K\) of a number field \(K\) carries important information about the field, of course. However, the additive semigroup \(O_K^+\) of ‘totally positive’ elements of \(O_K\) also plays a significant role when \(K\) is a totally real number field. The paper under review studies the case of real quadratic fields \(K = \mathbb{Q}(\sqrt{D})\). Here, it is natural to characterize various properties of \(O_K^+\) in terms of the continued fraction expansion of \(\sqrt{D}\).
The authors first obtain a description of the elements of \(O_K^+\) for \(K = \mathbb{Q}(\sqrt{D})\) which are indecomposable into two or more elements of \(O_K^+\), in terms of the continued fraction expansion of \(\sqrt{D}\). The indecomposable elements of \(O_K^+\) form a generating set for it and they have relations among them. In order to determine the relations between indecomposable elements, the authors first prove the interesting key result that every totally positive element of \(O_K\) is a positive linear combination of two consecutive indecomposable totally positive elements. Using this, they deduce all the relations neatly in terms of the continued fraction expansion of \(\sqrt{D}\). As uniqueness of decomposition of elements of \(O_K^+\) as a sum of indecomposables cannot be expected to hold (as there are relations among the indecomposables), the best one can hope for is to characterize those totally positive elements which are uniquely decomposable into indecomposables. The authors accomplish this again via the continued fraction expansion of \(\sqrt{D}\). Finally, using this last-mentioned result, the authors are able to deduce the remarkable theorem that the additive semigroup \(O_K^+\) determines the continued fraction of \(\sqrt{D}\) and hence, the field \(K\) up to isomorphism. This is striking because the ring of integers of any quadratic field does not determine the field at all from its additive group structure, as \(O_K \cong\mathbb{Z}^2\) as an abelian group.

MSC:

11R11 Quadratic extensions
11A55 Continued fractions
20M05 Free semigroups, generators and relations, word problems
20M14 Commutative semigroups

References:

[1] Blomer, V.; Kala, V., Number fields without \(n\)-ary universal quadratic forms, Math. Proc. Camb. Philos. Soc., 159, 2, 239-252 (2015) · Zbl 1371.11084
[2] Blomer, V.; Kala, V., On the rank of universal quadratic forms over real quadratic fields, Doc. Math., 23, 15-34 (2018) · Zbl 1396.11061
[3] Brunotte, H., Zur Zerlegung totalpositiver Zahlen in Ordnungen totalreeller algebraischer Zahlkörper [On the decomposition of totally positive numbers in orders of totally real algebraic number fields], Arch. Math. (Basel), 41, 6, 502-503 (1983) · Zbl 0528.12007 · doi:10.1007/BF01198578
[4] Cornelissen, G.; de Smit, B.; Li, X.; Marcolli, M.; Smit, H., Characterization of global fields by Dirichlet L-series, Res. Number Theory, 5, 1, 5-7 (2019) · Zbl 1460.11137 · doi:10.1007/s40993-018-0143-9
[5] Clifford, AH; Preston, GB, The Algebraic Theory of Semigroups. Vol. II, Mathematical Surveys, No. 7 (1967), Providence: American Mathematical Society, Providence · Zbl 0178.01203
[6] Dress, A.; Scharlau, R., Indecomposable totally positive numbers in real quadratic orders, J. Number Theory, 14, 3, 292-306 (1982) · Zbl 0507.12002 · doi:10.1016/0022-314X(82)90064-6
[7] Gaßmann, F., Bemerkungen zur vorstehenden arbeit von Hurwitz: Über beziehungen zwischen den primidealen eines algebraischen körpers und den substitutionen seiner gruppen [Note on the hereinabove work of Hurwitz: Relations between the primitives of an algebraic body and the substitutions of its groups], Math. Z., 25, 665-675 (1926) · JFM 52.0156.03
[8] Ginsburg, S., The Mathematical Theory of Context-free Languages (1966), New York: McGraw-Hill Book Co., New York · Zbl 0184.28401
[9] Grillet, PA, Semigroups, Monographs and Textbooks in Pure and Applied Mathematics, (1995), New York: Marcel Dekker, Inc., New York · Zbl 0874.20039
[10] García-Sánchez, PA; Rosales, JC, Numerical semigroups generated by intervals, Pac. J. Math., 191, 1, 75-83 (1999) · Zbl 1009.20069 · doi:10.2140/pjm.1999.191.75
[11] Jang, SW; Kim, BM, A refinement of the Dress-Scharlau theorem, J. Number Theory, 158, 234-243 (2016) · Zbl 1331.11092 · doi:10.1016/j.jnt.2015.06.003
[12] Kala, V., Norms of indecomposable integers in real quadratic fields, J. Number Theory, 166, 193-207 (2016) · Zbl 1414.11131 · doi:10.1016/j.jnt.2016.02.022
[13] Kala, V., Universal quadratic forms and elements of small norm in real quadratic fields, Bull. Aust. Math. Soc., 94, 1, 7-14 (2016) · Zbl 1345.11025 · doi:10.1017/S0004972715001495
[14] Kim, BM, Universal octonary diagonal forms over some real quadratic fields, Comment. Math. Helv., 75, 3, 410-414 (2000) · Zbl 1120.11301 · doi:10.1007/s000140050133
[15] Kala, V.; Korbelář, M., Idempotence of finitely generated commutative semifields, Forum Math., 30, 6, 1461-1474 (2018) · Zbl 1404.12010 · doi:10.1515/forum-2017-0098
[16] Kubota, T., Galois group of the maximal abelian extension over an algebraic number field, Nagoya Math. J., 12, 177-189 (1957) · Zbl 0079.26803 · doi:10.1017/S0027763000022042
[17] Kala, V., Yatsyna, P.: Lifting problem for universal quadratic forms (2018). arXiv:1808.02262
[18] Neukirch, J., Kennzeichnung der \(p\)-adischen und der endlichen algebraischen Zahlkörper [Characteristic of \(p\)-adic and finite algebraic number field extensions], Invent. Math., 6, 296-314 (1969) · Zbl 0192.40102
[19] Perron, O., Die Lehre von den Kettenbrüchen [The Theory of Continued Fractions] (1913), Leipzig: B. G. Teubner Verlag, Leipzig · JFM 43.0283.04
[20] Siegel, CL, Sums of \(m\) th powers of algebraic integers, Ann. Math. (2), 46, 313-339 (1945) · Zbl 0063.07010
[21] Tinková, M., Voutier, P.: Indecomposable integers in real quadratic fields (2018). arXiv:1812.03460 · Zbl 1445.11120
[22] Uchida, K., Isomorphisms of Galois groups, J. Math. Soc. Jpn., 28, 4, 617-620 (1976) · Zbl 0329.12013 · doi:10.2969/jmsj/02840617
[23] Yatsyna, P., A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real number field, Comment. Math. Helv., 94, 221-239 (2019) · Zbl 1471.11128 · doi:10.4171/CMH/459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.