×

Abstract commensurators of profinite groups. (English) Zbl 1244.20026

The authors of this article develop the basic theory of (abstract) commensurators in the context of profinite groups and with applications to the study of totally disconnected locally compact groups.
The commensurator \(\mathrm{Comm}(G)\) of a profinite group \(G\) is defined as follows. A virtual automorphism of \(G\) is a continuous isomorphism between open subgroups of \(G\). Two virtual automorphisms of \(G\) are equivalent if they coincide on some open subgroup of \(G\). The group \(\mathrm{Comm}(G)\) consists of equivalence classes of virtual automorphisms of \(G\), with multiplication given by composition of suitable representatives.
The concept is motivated by the related notion of relative commensurators, groups which arise, for instance, in the study of lattices in algebraic groups over local fields and automorphism groups of trees. The commensurator \(\mathrm{Comm}(G)\) plays a role analogous to the automorphism group of \(G\) when one is interested in properties of the (abstract) commensurability class of \(G\) rather than the specific group \(G\) itself. One can equip \(\mathrm{Comm}(G)\) with two different topologies, the \(\operatorname{Aut}\)-topology and the strong topology, each rendering it into a topological group.
The \(\operatorname{Aut}\)-topology on \(\mathrm{Comm}(G)\) is a generalisation of the standard topology on the automorphism group \(\operatorname{Aut}(G)\), arising from the natural homomorphisms \(\operatorname{Aut}(U)\to\mathrm{Comm}(G)\) for open subgroups \(U\) of \(G\). The \(\operatorname{Aut}\)-topology is useful for understanding the structure of the group \(\mathrm{Comm}(G)\): in many examples, where \(\mathrm{Comm}(G)\) turns out to be isomorphic to a familiar locally compact group, the \(\operatorname{Aut}\)-topology coincides with the ‘natural’ topology. For instance, if \(G\) is a compact \(p\)-adic Lie group, then \(\mathrm{Comm}(G)\), equipped with the \(\operatorname{Aut}\)-topology, is isomorphic to the automorphism group of the \(\mathbb Q_p\)-Lie algebra associated to \(G\). In examples where \(\mathrm{Comm}(G)\) is not locally compact with respect to the \(\operatorname{Aut}\)-topology, e.g.when \(G\) is a non-Abelian free pro-\(p\) group, it appears to be difficult to describe \(\mathrm{Comm}(G)\).
The strong topology on \(\mathrm{Comm}(G)\) is a suitable tool for studying so-called envelopes of \(G\). It is known that a topological group \(L\) is totally disconnected locally compact if and only if it contains an open profinite subgroup. If \(L\) contains the profinite group \(G\) as an open subgroup, one calls \(L\) an envelope of \(G\). The commensurator \(\mathrm{Comm}(G)\) is closely related to the problem of describing possible envelopes \(L\) of \(G\): such an envelope \(L\) can often be recovered from the natural homomorphism \(L\to\mathrm{Comm}(G)\). Of particular interest is the case where \(G\) admits a topologically simple envelope. A fundamental open problem in this context is due to G. A.Willis [J. Algebra 312, No. 1, 405–417 (2007; Zbl 1119.22005)]: is it true that a profinite group \(G\) admits, up to isomorphism, at most one compactly generated topologically simple envelope?
In the paper under review many examples of profinite groups and their commensurators are considered and put into context. These include the Nottingham group, the pro-\(2\) completion of the Grigorchuk group, open compact subgroups of simple algebraic groups over local fields and absolute Galois groups. The commensurator of the Nottingham group has been determined by M. Ershov [in Trans. Am. Math. Soc. 362, No. 12, 6663–6678 (2010; Zbl 1225.20026)]; his result implies that the Nottingham group does not admit any topologically simple envelopes. In contrast, based on work of C. E.Röver [Geom. Dedicata 94, 45–61 (2002; Zbl 1064.20032)] on the commensurator of the Grigorchuk group, one can construct a topologically simple envelope of the pro-\(2\) completion of the Grigorchuk group. Several known important results, such as Pink’s analogue of Mostow’s strong rigidity theorem for simple algebraic groups over local fields and the Neukirch-Uchida theorem in algebraic number theory, can be reformulated as structure theorems for commensurators of certain profinite groups.
The paper forms a systematic survey on fundamental aspects of commensurators of profinite groups and may serve as a springboard for further research on totally disconnected locally compact groups.

MSC:

20E18 Limits, profinite groups
22D05 General properties and structure of locally compact groups
22D45 Automorphism groups of locally compact groups
20E36 Automorphisms of infinite groups
20E07 Subgroup theorems; subgroup growth

References:

[1] Yiftach Barnea and Benjamin Klopsch, Index-subgroups of the Nottingham group, Adv. Math. 180 (2003), no. 1, 187 – 221. · Zbl 1045.20021 · doi:10.1016/S0001-8708(02)00102-0
[2] Laurent Bartholdi and Said N. Sidki, The automorphism tower of groups acting on rooted trees, Trans. Amer. Math. Soc. 358 (2006), no. 1, 329 – 358. · Zbl 1138.20039
[3] Hyman Bass and Alexander Lubotzky, Tree lattices, Progress in Mathematics, vol. 176, Birkhäuser Boston, Inc., Boston, MA, 2001. With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits. · Zbl 1053.20026
[4] Armand Borel and Jacques Tits, Homomorphismes ”abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499 – 571 (French). · Zbl 0272.14013 · doi:10.2307/1970833
[5] N. Bourbaki, General topology. Chapters 5-10, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French. Reprint of the 1966 edition. · Zbl 0683.54004
[6] -, General topology. Chapters 1-4, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French. Reprint of the 1989 English translation.
[7] Marc Burger and Shahar Mozes, Groups acting on trees: from local to global structure, Inst. Hautes Études Sci. Publ. Math. 92 (2000), 113 – 150 (2001). · Zbl 1007.22012
[8] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-\? groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. · Zbl 0744.20002
[9] Mikhail Ershov, New just-infinite pro-\? groups of finite width and subgroups of the Nottingham group, J. Algebra 275 (2004), no. 1, 419 – 449. · Zbl 1062.20030 · doi:10.1016/j.jalgebra.2003.08.012
[10] Mikhail Ershov, On the commensurator of the Nottingham group, Trans. Amer. Math. Soc. 362 (2010), no. 12, 6663 – 6678. · Zbl 1225.20026
[11] Ivan Fesenko, On just infinite pro-\?-groups and arithmetically profinite extensions of local fields, J. Reine Angew. Math. 517 (1999), 61 – 80. · Zbl 0997.11107 · doi:10.1515/crll.1999.098
[12] R. I. Grigorchuk, Just infinite branch groups, New horizons in pro-\? groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 121 – 179. · Zbl 0982.20024
[13] Benjamin Klopsch, Automorphisms of the Nottingham group, J. Algebra 223 (2000), no. 1, 37 – 56. · Zbl 0965.20021 · doi:10.1006/jabr.1999.8040
[14] Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. · Zbl 0984.00001
[15] Michel Lazard, Groupes analytiques \?-adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389 – 603 (French). · Zbl 0139.02302
[16] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. · Zbl 0732.22008
[17] Shinichi Mochizuki, A version of the Grothendieck conjecture for \?-adic local fields, Internat. J. Math. 8 (1997), no. 4, 499 – 506. · Zbl 0894.11046 · doi:10.1142/S0129167X97000251
[18] Jürgen Neukirch, Kennzeichnung der endlich-algebraischen Zahlkörper durch die Galoisgruppe der maximal auflösbaren Erweiterungen, J. Reine Angew. Math. 238 (1969), 135 – 147 (German). · Zbl 0201.05901 · doi:10.1515/crll.1969.238.135
[19] Jürgen Neukirch, Kennzeichnung der \?-adischen und der endlichen algebraischen Zahlkörper, Invent. Math. 6 (1969), 296 – 314 (German). · Zbl 0192.40102 · doi:10.1007/BF01425420
[20] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. · Zbl 0948.11001
[21] Nikolay Nikolov and Dan Segal, On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. of Math. (2) 165 (2007), no. 1, 171 – 238. · Zbl 1126.20018 · doi:10.4007/annals.2007.165.171
[22] Nikolay Nikolov and Dan Segal, On finitely generated profinite groups. II. Products in quasisimple groups, Ann. of Math. (2) 165 (2007), no. 1, 239 – 273. · doi:10.4007/annals.2007.165.239
[23] Richard Pink, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), no. 2, 438 – 504. · Zbl 0914.20044 · doi:10.1006/jabr.1998.7439
[24] Florian Pop, On Grothendieck’s conjecture of birational anabelian geometry, Ann. of Math. (2) 139 (1994), no. 1, 145 – 182. · Zbl 0814.14027 · doi:10.2307/2946630
[25] -, On Grothendieck’s conjecture of birational anabelian geometry, II, Preprint, 1994. · Zbl 0814.14027
[26] Gopal Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), no. 2, 197 – 202 (English, with French summary). · Zbl 0492.20029
[27] B. Rémy, Topological simplicity, commensurator super-rigidity and non-linearities of Kac-Moody groups, Geom. Funct. Anal. 14 (2004), no. 4, 810 – 852. With an appendix by P. Bonvin. · Zbl 1056.22015 · doi:10.1007/s00039-004-0476-5
[28] Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. · Zbl 0483.20001
[29] Steven Roman, Field theory, 2nd ed., Graduate Texts in Mathematics, vol. 158, Springer, New York, 2006. · Zbl 1172.12001
[30] Claas E. Röver, Abstract commensurators of groups acting on rooted trees, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), 2002, pp. 45 – 61. · Zbl 1064.20032 · doi:10.1023/A:1020916928393
[31] Jean-Pierre Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 1992. 1964 lectures given at Harvard University.
[32] Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997. Translated from the French by Patrick Ion and revised by the author. · Zbl 0902.12004
[33] Kôji Uchida, Isomorphisms of Galois groups, J. Math. Soc. Japan 28 (1976), no. 4, 617 – 620. · Zbl 0329.12013 · doi:10.2969/jmsj/02840617
[34] D. van Dantzig, Studien über topologische Algebra, Dissertation, 1931. · Zbl 0006.10201
[35] B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Matematik und ihrer Grenzgebiete, Band 76. · Zbl 0261.20038
[36] Thomas Weigel and Pavel Zalesskii, Profinite groups of finite cohomological dimension, C. R. Math. Acad. Sci. Paris 338 (2004), no. 5, 353 – 358 (English, with English and French summaries). · Zbl 1060.20044 · doi:10.1016/j.crma.2003.12.022
[37] G. Willis, The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), no. 2, 341 – 363. · Zbl 0811.22004 · doi:10.1007/BF01450491
[38] George A. Willis, Compact open subgroups in simple totally disconnected groups, J. Algebra 312 (2007), no. 1, 405 – 417. · Zbl 1119.22005 · doi:10.1016/j.jalgebra.2006.06.049
[39] John S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 0909.20001
[40] John S. Wilson, On just infinite abstract and profinite groups, New horizons in pro-\? groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 181 – 203. · Zbl 0981.20021
[41] John S. Wilson, Large hereditarily just infinite groups, J. Algebra 324 (2010), no. 2, 248 – 255. · Zbl 1209.20028 · doi:10.1016/j.jalgebra.2010.03.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.