×

Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating. (English) Zbl 07659351


MSC:

74-XX Mechanics of deformable solids
78-XX Optics, electromagnetic theory
Full Text: DOI

References:

[1] Misra, JC; Samanta, SC; Chakrabarti, AK, Magneto-thermoelastic interaction in an aeolotropic solid cylinder subjected to a ramp-type heating, Int J Eng Sci, 29, 1065-1075 (1991) · Zbl 0761.73096 · doi:10.1016/0020-7225(91)90112-G
[2] Misra, JC; Samanta, SC; Chakrabarti, AK, Magnetothermoelastic interaction in an infinite elastic continuum with a cylindrical hole subjected to ramp-type heating, Int J Eng Sci, 29, 1505-1514 (1991) · Zbl 0763.73048 · doi:10.1016/0020-7225(91)90122-J
[3] Misra, SC; Samanta, SC; Chakrabarti, AK, Transient magnetothermoelastic waves in a viscoelastic half-space produced by ramp-type heating of its surface, Comput Struct, 43, 951-957 (1992) · Zbl 1119.74367 · doi:10.1007/s00419-005-0440-3
[4] Youssef, HM, Problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to a ramp-type heating and loading, Arch Appl Mech, 75, 553-565 (2006) · Zbl 1119.74367
[5] Youssef, HM, Two-dimensional generalized thermoelasticity problem for a half-space subjected to ramp-type heating, Eur J Mech A Solids, 25, 745-763 (2006) · Zbl 1099.74018 · doi:10.1016/j.euromechsol.2005.11.005
[6] Youssef, HM, Two-dimensional problem of a two-temperature generalized thermoelastic half-space subjected to ramp-type heating, Comput Math Model, 19, 201-216 (2008) · Zbl 1151.74015 · doi:10.1007/s10598-008-0014-7
[7] Abbas, IA, Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating, J Comput Theor Nanosci, 11, 642-645 (2014) · doi:10.1166/jctn.2014.3407
[8] Chen, PJ; Gurtin, ME, On a theory of heat conduction involving two temperatures, Z Angew Math Phys, 19, 614-627 (1968) · Zbl 0159.15103 · doi:10.1007/BF01594969
[9] Chen, PJ; Williams, WO, A note on non-simple heat conduction, Z Angew Math Phys, 19, 969-970 (1968) · doi:10.1007/BF01602278
[10] Chen, PJ; Gurtin, ME; Williams, WO, On the thermodynamics of non-simple elastic materials with two temperatures, Z Angew Math Phys, 20, 107-112 (1969) · Zbl 0164.26104 · doi:10.1007/BF01591120
[11] Boley, BA; Tolins, IS, Transient coupled thermoelastic boundary value problems in the half-space, ASME J Appl Mech, 29, 637-646 (1962) · Zbl 0114.16003 · doi:10.1115/1.3640647
[12] Warren, WE; Chen, PJ, Wave propagation in the two temperature theory of thermoelasticity, Acta Mech, 16, 21-33 (1973) · Zbl 0251.73011 · doi:10.1007/BF01177123
[13] Youssef, HM, Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity, Appl Math Mech (Engl Ed.), 26, 470-475 (2005) · Zbl 1144.74320 · doi:10.1007/BF02465386
[14] Zenkour, AM; Abouelregal, AE, The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating, Struct Eng Mech, 51, 199-214 (2014) · doi:10.12989/sem.2014.51.2.199
[15] Zenkour, AM; Abouelregal, AE, Effect of harmonically varying heat on FGnanobeams in the context of a nonlocal two-temperature thermoelasticity theory, Eur J Comput Mech, 23, 1-14 (2014) · Zbl 1305.74053
[16] Abbas, IA; Zenkour, AM, Two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced anisotropic plate containing a circular cavity with two relaxation times, J Comput Theor Nanosci, 11, 1-7 (2014) · doi:10.1166/jctn.2014.3309
[17] Zenkour, AM; Abouelregal, AE, State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction, Z Angew Math Phys, 65, 149-164 (2014) · Zbl 1433.74043 · doi:10.1007/s00033-013-0313-5
[18] Abbas, IA; Youssef, HM, Two-temperature generalized thermoelasticity under ramp-type heating by finite element method, Meccanica, 48, 331-339 (2013) · Zbl 1293.74065 · doi:10.1007/s11012-012-9604-8
[19] Cao, BY; Guo, ZY, Equation of motion of a phonon gas and non-Fourier heat conduction, J Appl Phys, 102 (2007)
[20] Eringen, AC, Nonlocal continuum field theories, 46, 391-398 (2002), New York (NY): Springer, New York (NY) · Zbl 1023.74003
[21] Cattaneo, C., A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Compte Rendus, 247, 431-433 (1958) · Zbl 1339.35135
[22] Vernotte, P., Les paradoxes de la théorie continue de léquation de la chaleur, C R Acad Sci, 246, 3154-3155 (1958) · Zbl 1341.35086
[23] Lord, HW; Shulman, YA, A generalized dynamical theory of thermoelasticity, J Mech Phys Solids, 15, 299-309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[24] Green, AE; Lindsay, KE, Thermoelasticity, J Elast, 2, 1-7 (1972) · Zbl 0775.73063 · doi:10.1007/BF00045689
[25] Green, AE; Naghdi, PM, On undamped heat waves in an elastic solid, J Therm Stresses, 15, 252-264 (1992)
[26] Green, AE; Naghdi, PM, Thermoelasticity without energy dissipation, J Elast, 31, 189-208 (1993) · Zbl 0784.73009 · doi:10.1007/BF00044969
[27] Kuang, ZB, Variational principles for generalized dynamical theory of thermopiezoelectricity, Acta Mech, 203, 1-11 (2008) · Zbl 1161.74018
[28] Guo, ZY; Hou, QW, Thermal wave based on the thermomass model, J Heat Transfer, 132 (2010)
[29] Abbas, IA, Generalized magneto-thermoelastic interaction in a fiber-reinforced anisotropic hollow cylinder, Int J Thermophys, 33, 567-579 (2012) · doi:10.1007/s10765-012-1178-0
[30] Abbas, IA, Electro-magneto-thermo-elastic response of infinite functionally graded cylinders without energy dissipation, J Magn Magn Mater, 395, 123-129 (2015)
[31] Zenkour, AM; Abbas, IA, Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source, J Magn Magn Mater, 377, 452-459 (2015)
[32] Zenkour, AM; Abbas, IA, Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method, J Vib Control, 20, 1907-1919 (2014) · Zbl 1371.74264 · doi:10.1177/1077546313480541
[33] Yu, YJ; Tian, XG; Liu, XR, Size-dependent generalized thermoelasticity using Eringen’s nonlocal model, Eur J Mech A Solids, 51, 96-106 (2015) · Zbl 1406.74186 · doi:10.1016/j.euromechsol.2014.12.005
[34] Yu, YJ; Tian, XG; Lu, TJ, Fractional order generalized electro-magneto-thermo-elasticity, Eur J Mech A Solids, 42, 188-202 (2013) · Zbl 1406.74232 · doi:10.1016/j.euromechsol.2013.05.006
[35] Yu, YJ; Hu, W.; Tian, XG, A novel generalized thermoelasticity model based on memory-dependent derivative, Int J Eng Sci, 81, 123-134 (2014) · Zbl 1423.74253 · doi:10.1016/j.ijengsci.2014.04.014
[36] Sobolev, S., Equations of transfer in non-local media, Int J Heat Mass Transf, 37, 2175-2182 (1994) · Zbl 0926.74007 · doi:10.1016/0017-9310(94)90319-0
[37] Tzou, D., Macro-to micro-scale heat transfer: the lagging behavior (1996), Washington (DC): CRC Press, Washington (DC)
[38] Chan, WL; Averback, RS; Cahill, DG, Dynamics of femtosecond laser-induced melting of silver, Phys Rev B, 78 (2008)
[39] Yu, YJ; Li, CL; Xue, ZN, The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale, Phys Lett A, 380, 255-261 (2016) · doi:10.1016/j.physleta.2015.09.030
[40] Guyer, RA; Krumhansl, JA, Solution of the linearized phonon Boltzmann equation, Phys Rev, 148, 766-778 (1966) · doi:10.1103/PhysRev.148.766
[41] Ma, YB, Size-dependent thermal conductivity in nanosystems based on non-Fourier heat transfer, Appl Phys Lett, 101 (2012)
[42] Dong, Y.; Cao, BY; Guo, ZY, Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics, Physica E, 56, 256-262 (2014) · doi:10.1016/j.physe.2013.10.006
[43] Abouelregal, AE, Generalized thermoelastic infinite transversely isotropic body with a cylindrical cavity due to moving heat source and harmonically varying heat, Meccanica, 48, 1731-1745 (2013) · Zbl 1293.74067 · doi:10.1007/s11012-013-9705-z
[44] Ailawalia, P.; Narah, NS, Effect of rotation in a generalized thermoelastic medium with hydrostatic initial stress subjected to ramp-type heating and loading, Int J Thermophys, 30, 2078-2097 (2009) · doi:10.1007/s10765-009-0686-z
[45] Brančík, L., Programs for fast numerical inversion of Laplace transforms in MATLAB language environment, 27-39 (1999)
[46] Brančík, L., Utilization of quotient-difference algorithm in FFT-based numerical ILT method, 352-355 (2001)
[47] Brančík, L., Improved numerical inversion of Laplace transforms applied to simulation of distributed circuits, 51-54 (2001)
[48] Brančík, L., Utilization of Matlab in simulation of linear hybrid circuits, Radioeng, 12, 6-11 (2003)
[49] Henriei, P.; Ralston, A.; Wilf, HS, Quotient-difference algorithms in mathematical methods for digital computers, 2, 37-62 (1967), New York (NY): Wiley, New York (NY) · Zbl 0183.18601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.