×

Finite Gorenstein representation type implies simple singularity. (English) Zbl 1148.14004

Over an algebraically closed field \(K\) of characteristic 0, simple singularities are classically known as hypersurfaces \(R=K[[X_1,\dots ,X_{d+1}]]/(f)\), where \(f\) is (up to contact equivalence) one of the equations ADE [cf. V. I. Arnol’d, S. M. Gusejn-Zade and A. N. Varchenko, Singularities of differentiable maps. Volume I: The classification of critical points, caustics and wave fronts. Monographs in Mathematics, Vol. 82. Boston-Basel-Stuttgart: Birkhäuser (1985; Zbl 0554.58001)]. Among many others, those are equivalent conditions for a (formal) hypersurface:
(i) \(R\) is simple.
(ii) \(R\) is of finite CM-representation type (i.e. the number of isomorphism classes of indecomposable maximal Cohen-Macaulay modules is finite).
(iii) \(R\) is of finite deformation type.
This classification was extended by G.-M. Greuel and H. Kröning [Math. Z. 203, No. 2, 339–354 (1990; Zbl 0715.14001)] to arbitrary characteristic, where the equations \(f\) look slightly different in some cases.
The article under review gives a new characterization of simple singularities. In this context, \(R\) is simple iff it is a hypersurface of finite CM-representation type.
The authors discuss the following condition: Let \(R\) be a local noetherian ring and \((\mathbf{mod}_R)\) the category of finitely generated \(R\)-modules. Let \({\mathcal G}(R)\) denote the full subcategory of modules \( M\in (\mathbf{mod}_R)\) such that there exists an exact sequence \[ \dots \to F_n\to \dots \to F_1 \to \dots \to F_0 \to M\to 0 \] with \(F_i\) f.g. free and such that the dual \[ \dots \to F_n^*\to \dots \to F_1^* \to F_0^* \] of the complex \((F_i)_{i\in\mathbb N}\) is exact (\(^*\) denotes the algebraic dual \(\text{Hom} (- ,R)\)). Such modules are said to be of Gorenstein dimension 0 (in the sense of Auslander-Bridger) or totally reflexive (in the sense of Avramov-Martsinkovsky).
The authors show: Theorem A. Let \(R\) be complete. If the set of isomorphism classes of indecomposable modules in \({\mathcal G} (R)\) different from the class of \(R\) is finite and not empty, then \(R\) is simple.
There is, in fact, a close relation to the notion of MCM-representations. Thus it is reasonable to speak of finite Gorenstein representation type in the above case.
A theorem of J. Herzog [Math. Ann. 233, 21–34 (1978; Zbl 0358.13009)] states: If \(R\) is Gorenstein and of finite MCM-representation type then \(R\) is an abstract hypersurface, i.e. \(\hat{R} \cong A/xA\) with \(A\) regular, \(x\in m_A\).
On the other hand, if \(R\) is Gorenstein, \({\mathcal G} (R)= \mathcal{MCM}(R)\). Thus theorem A is a corollary of the following which does not make any assumption on the local noetherian ring \(R\).
Theorem B. Let \(R\) be a local noetherian ring. If the set of isomorphism classes of indecomposable modules in \({\mathcal G}(R)\) is finite, then \(R\) is Gorenstein or every module in \({\mathcal G}(R)\) is free.
In this general context, the known theory of CM-approximation is not appropriate any more, but it gives an idea how to prove the above result for the Gorenstein case. The authors develop an approximation theory of modules in \((\mathbf{mod}_R)\) with respect to \({\mathcal G}(R)\). More generally, it turns out necessary to do this for any reflexive subcategory \(\mathcal B\) of \((\mathbf{mod}_R)\) i.e. for a subcategory \(\mathcal B\) with the following properties: Denote \[ {\mathcal B}^\perp := \{ L\in (\mathbf{mod}_R) \mid \text{Ext}_R^i(B,L)=0 \;\;\forall B\in {\mathcal B}, i>0 \} . \] Then
\(\bullet\) \(R\in {\mathcal B} \cap {\mathcal B}^\perp \)
\(\bullet\) \(\mathcal B\) is closed under direct sums and direct summands.
\(\bullet\) \(\mathcal B\) is closed under syzygies.
\(\bullet\) \(\mathcal B\) is closed under algebraic duality.
\({\mathcal G} (R)\) is known to be the largest reflexive subcategory of \((\mathbf{mod}_R)\), and for any reflexive subcategory \(\mathcal B\) there are inclusions \[ {\mathcal F} (R) \subseteq {\mathcal B} \subseteq {\mathcal G} (R), \] where \({\mathcal F} (R)\) denotes the full subcategory of free modules in \((\mathbf{mod}_R)\).
Using a result of Takahashi, conditions on the existence of covers are obtained: Assuming the Krull-Remak-Schmidt property for \((\mathbf{mod}_R)\), a module \(M\) has a \(\mathcal B\)-precover iff it has a \(\mathcal B\)-approximation.
There is the following relation to MCM-approximation:
\({\mathcal G}(R) \subseteq \mathcal{MCM}(R)\) iff \(R\) is Cohen-Macaulay.
Central part in the proof of Theorem B is Theorem C, which reduces Theorem B to showing that the residue field \(k\) of \(R\) has a reflexive hull.
Corollary. For a local ring \(R\) such that \({\mathcal G}(R)\) contains not only free modules, the following conditions are equivalent:
\(\bullet\) \(R\) is Gorenstein.
\(\bullet\) The residue field \(R/m\) has a \({\mathcal G}(R)\)-approximation.
\(\bullet\) All modules in \( (\mathbf{mod}_R)\) have a minimal \({\mathcal G} (R)\)-approximation.

MSC:

14B05 Singularities in algebraic geometry
18G25 Relative homological algebra, projective classes (category-theoretic aspects)
13C14 Cohen-Macaulay modules

References:

[1] Arnol′d, Vladimir I., Critical points of smooth functions, (Proceedings of the International Congress of Mathematicians, vol. 1. Proceedings of the International Congress of Mathematicians, vol. 1, Vancouver, BC, 1974 (1975), Canad. Math. Congress: Canad. Math. Congress Montreal, Quebec), 19-39, MR0431217 · Zbl 0343.58002
[2] Auslander, Maurice; Smalø, Sverre O., Preprojective modules over Artin algebras, J. Algebra, 66, 1, 61-122 (1980), MR591246 · Zbl 0477.16013
[3] Auslander, Maurice, Coherent functors, (Proc. Conf. Categorical Algebra. Proc. Conf. Categorical Algebra, La Jolla, CA, 1965 (1966), Springer-Verlag: Springer-Verlag New York), 189-231, MR0212070 · Zbl 0192.10902
[4] Maurice Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Secrétariat mathématique, Paris, 1967, Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67. Texte rédigé, d’après des exposés de Maurice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles. Available from http://www.numdam.org; Maurice Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Secrétariat mathématique, Paris, 1967, Séminaire d’Algèbre Commutative dirigé par Pierre Samuel, 1966/67. Texte rédigé, d’après des exposés de Maurice Auslander, par Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles. Available from http://www.numdam.org · Zbl 0157.08301
[5] Auslander, Maurice, Finite type implies isolated singularity, (Orders and Their Applications. Orders and Their Applications, Oberwolfach, 1984. Orders and Their Applications. Orders and Their Applications, Oberwolfach, 1984, Lecture Notes in Math., vol. 1142 (1985), Springer-Verlag: Springer-Verlag Berlin), 1-4, MR812487 · Zbl 0584.13013
[6] Auslander, Maurice; Bridger, Mark, Stable module theory, Mem. Amer. Math. Soc., 94 (1969), MR0269685 · Zbl 0204.36402
[7] Auslander, Maurice; Buchweitz, Ragnar-Olaf, The homological theory of maximal Cohen-Macaulay approximations, Colloque en l’honneur de Pierre Samuel. Colloque en l’honneur de Pierre Samuel, Orsay, 1987. Colloque en l’honneur de Pierre Samuel. Colloque en l’honneur de Pierre Samuel, Orsay, 1987, Mém. Soc. Math. Fr. (N.S.), 38, 5-37 (1989), MR1044344 · Zbl 0697.13005
[8] Auslander, Maurice; Ding, Songqing; Solberg, Øyvind, Liftings and weak liftings of modules, J. Algebra, 156, 2, 273-317 (1993), MR1216471 · Zbl 0778.13007
[9] Avramov, Luchezar L.; Gasharov, Vesselin N.; Peeva, Irena V., Complete intersection dimension, Publ. Math. Inst. Hautes Études Sci., 86, 67-114 (1997), (1998), MR1608565 · Zbl 0918.13008
[10] Avramov, Luchezar L.; Iyengar, Srikanth B., Constructing modules with prescribed cohomological support, Illinois J. Math., 51, 1, 1-20 (2007), MR2346182 · Zbl 1121.13014
[11] Avramov, Luchezar L.; Martsinkovsky, Alex, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. (3), 85, 2, 393-440 (2002), MR1912056 · Zbl 1047.16002
[12] Buchweitz, Ragnar-Olaf; Greuel, Gert-Martin; Schreyer, Frank-Olaf, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math., 88, 1, 165-182 (1987), MR877011 · Zbl 0617.14034
[13] Christensen, Lars Winther, Gorenstein Dimensions, Lecture Notes in Math., vol. 1747 (2000), Springer-Verlag: Springer-Verlag Berlin, MR1799866 · Zbl 0965.13010
[14] Enochs, Edgar E.; Jenda, Overtoun M. G.; Xu, Jinzhong, A generalization of Auslander’s last theorem, Algebr. Represent. Theory, 2, 3, 259-268 (1999), MR1715748 · Zbl 0938.13005
[15] Enochs, Edgar E.; López-Ramos, J. A., Kaplansky classes, Rend. Sem. Mat. Univ. Padova, 107, 67-79 (2002), MR1926201 · Zbl 1099.13019
[16] Guralnick, Robert M., Lifting homomorphisms of modules, Illinois J. Math., 29, 1, 153-156 (1985), MR769764 · Zbl 0558.16003
[17] Hartshorne, Robin, Residues and Duality, Lecture Notes in Math., vol. 20 (1966), Springer-Verlag: Springer-Verlag Berlin, MR0222093 · Zbl 0212.26101
[18] Herzog, Jürgen, Ringe mit nur endlich vielen Isomorphieklassen von maximalen, unzerlegbaren Cohen-Macaulay-Moduln, Math. Ann., 233, 1, 21-34 (1978), MR0463155 · Zbl 0358.13009
[19] Huneke, Craig; Leuschke, Graham J., Two theorems about maximal Cohen-Macaulay modules, Math. Ann., 324, 2, 391-404 (2002), MR1933863 · Zbl 1007.13005
[20] Jørgensen, Peter, Existence of Gorenstein projective resolutions and Tate cohomology, J. Eur. Math. Soc. (JEMS), 9, 1, 59-76 (2007), MR2283103 · Zbl 1114.13012
[21] Knörrer, Horst, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math., 88, 1, 153-164 (1987), MR877010 · Zbl 0617.14033
[22] Leuschke, Graham; Wiegand, Roger, Ascent of finite Cohen-Macaulay type, J. Algebra, 228, 2, 674-681 (2000), MR1764587 · Zbl 0963.13020
[23] Schreyer, Frank-Olaf, Finite and countable CM-representation type, (Singularities, Representation of Algebras, and Vector Bundles. Singularities, Representation of Algebras, and Vector Bundles, Lambrecht, 1985. Singularities, Representation of Algebras, and Vector Bundles. Singularities, Representation of Algebras, and Vector Bundles, Lambrecht, 1985, Lecture Notes in Math., vol. 1273 (1987), Springer-Verlag: Springer-Verlag Berlin), 9-34, MR915167 · Zbl 0719.14024
[24] Serre, Jean-Pierre, Local Algebra, Springer Monogr. Math. (2000), Springer-Verlag: Springer-Verlag Berlin, MR1771925 · Zbl 0959.13010
[25] Solberg, Øyvind, Hypersurface singularities of finite Cohen-Macaulay type, Proc. London Math. Soc. (3), 58, 2, 258-280 (1989), MR977477 · Zbl 0631.13019
[26] Striuli, Janet, On extensions of modules, J. Algebra, 285, 1, 383-398 (2005), MR2119119 · Zbl 1089.13009
[27] Takahashi, Ryo, Modules of G-dimension zero over local rings of depth two, Illinois J. Math., 48, 3, 945-952 (2004), MR2114261 · Zbl 1076.13007
[28] Takahashi, Ryo, On the category of modules of Gorenstein dimension zero II, J. Algebra, 278, 1, 402-410 (2004), MR2068085 · Zbl 1094.13022
[29] Takahashi, Ryo, On the category of modules of Gorenstein dimension zero, Math. Z., 251, 2, 249-256 (2005), MR2191025 · Zbl 1098.13014
[30] Wiegand, Roger, Local rings of finite Cohen-Macaulay type, J. Algebra, 203, 1, 156-168 (1998), MR1620725 · Zbl 0921.13015
[31] Xu, Jinzhong, Flat Covers of Modules, Lecture Notes in Math., vol. 1634 (1996), Springer-Verlag: Springer-Verlag Berlin, MR1438789 · Zbl 0860.16002
[32] Yoshino, Yuji, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser., vol. 146 (1990), Cambridge University Press: Cambridge University Press Cambridge, MR1079937 · Zbl 0745.13003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.