×

SPDEs driven by standard symmetric \(\alpha\)-stable cylindrical Lévy processes: existence, Lyapunov functionals and Itô formula. (English) Zbl 07904041

Summary: We investigate several aspects of solutions to stochastic evolution equations in Hilbert spaces driven by a standard symmetric \(\alpha\)-stable cylindrical noise. Similarly to cylindrical Brownian motion or Gaussian white noise, standard symmetric \(\alpha\)-stable noise exists only in a generalised sense in Hilbert spaces. The main results of this work are the existence of a mild solution, long-term regularity of the solutions via Lyapunov functional approach, and an Itô formula for mild solutions to evolution equations under consideration. The main tools for establishing these results are Yosida approximations and an Itô formula for Hilbert space-valued semi-martingales where the martingale part is represented as an integral driven by cylindrical \(\alpha\)-stable noise. While these tools are standard in stochastic analysis, due to the cylindrical nature of our noise, their application requires completely novel arguments and techniques.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60G20 Generalized stochastic processes
60G51 Processes with independent increments; Lévy processes
60G52 Stable stochastic processes

References:

[1] S. Albeverio, L. Gawarecki, V. Mandrekar, B. Rüdiger, and B. Sarkar. Itô formula for mild solutions of SPDEs with Gaussian and non-Gaussian noise and applications to stability properties. Random Oper. Stoch. Equ., 25(2):79-105, 2017. MathSciNet: MR3652290 · Zbl 1370.60101
[2] H. Amman and J. Escher. Analysis II. Birkhäuer Verlag, Basel-Boston-Berlin, 2006. · Zbl 1097.26001
[3] D. Applebaum and M. Riedle. Cylindrical Lévy processes in Banach spaces. Proc. Lond. Math. Soc. (3), 101(3):697-726, 2010. MathSciNet: MR2734958 MathSciNet: MR2600121 zbMATH: 1210.60012 · Zbl 1210.60012
[4] J. Bergh and J. Löfström. Interpolation spaces. An introduction, volume 223. Springer Science & Business Media, 2012. MathSciNet: MR0482275
[5] G. Bodó and M. Riedle. Stochastic integration with respect to canonical \(α\)-stable cylindrical Lévy processes. Electronic Journal of Probability, 27:1-23, 2022. MathSciNet: MR4516310 · Zbl 1515.60167
[6] Z. Brzeźniak and J. Zabczyk. Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise. Potential Anal., 32(2):153-188, 2010. MathSciNet: MR2584982 · Zbl 1187.60048
[7] C. Chong. Stochastic PDEs with heavy-tailed noise. Stochastic Process. Appl., 127(7):2262-2280, 2017. MathSciNet: MR3652413 · Zbl 1367.60080
[8] C. Chong, R. C. Dalang, and T. Humeau. Path properties of the solution to the stochastic heat equation with Lévy noise. Stochastics and Partial Differential Equations: Analysis and Computations, Aug 2018. MathSciNet: MR3916265
[9] G. Da Prato, A. Jentzen, and M. Röckner. A mild Itô formula for SPDEs. Transactions of the American Mathematical Society, 372(6):3755-3807, 2019. MathSciNet: MR4009384 · Zbl 1423.35472
[10] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992. MathSciNet: MR1207136 MathSciNet: MR745449 · Zbl 0761.60052
[11] C. Dellacherie and P. A. Meyer. Probabilities and potential. North-Holland Publishing Co., Amsterdam, 1978. MathSciNet: MR0521810 MathSciNet: MR1342297 · Zbl 0494.60001
[12] S. Diaz and F. Mayoral. On compactness in spaces of Bochner integrable functions. Acta Math. Hungar., 83(3):231-239, 1999. MathSciNet: MR1692302 · Zbl 0926.46031
[13] I. M. Gel’fand and N. Ya. Vilenkin. Generalized functions. Vol. 4: Applications of harmonic analysis. New York: Academic Press, 1964. MathSciNet: MR0173945
[14] M. Haase. The functional calculus for sectorial operators. Birkhäuser Verlag, Basel, 2006. MathSciNet: MR2244037 · Zbl 1101.47010
[15] A. Ichikawa. Semilinear stochastic evolution equations: boundedness, stability and invariant measures. Stochastics, 12(1):1-39, 1984. MathSciNet: MR0738933 · Zbl 0538.60068
[16] J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes. Springer-Verlag, Berlin, second edition, 2003. MathSciNet: MR1943877 · Zbl 1018.60002
[17] A. Jakubowski, S. Kwapień, P. Raynaud de Fitte, and J. Rosiński. Radonification of cylindrical semimartingales by a single Hilbert-Schmidt operator. Infinite Dimensional Analysis Quantum Probability and Related Topics, 5:429-440, 09 2002. MathSciNet: MR1930962 · Zbl 1056.60001
[18] A. Jakubowski and M. Riedle. Stochastic integration with respect to cylindrical Lévy processes. Ann. Probab., 45(6B):4273-4306, 2017. MathSciNet: MR3737911 zbMATH: 1390.60192 · Zbl 1390.60192
[19] O. Kallenberg. Foundations of modern probability. Springer, New York, 2002. MathSciNet: MR1876169 zbMATH: 0996.60001 · Zbl 0996.60001
[20] L. J. Kelley. General Topology. Graduate Texts in Mathematics. Springer- Verlag, New York-Berlin, 27th edition, 1975. MathSciNet: MR0370454 · Zbl 0306.54002
[21] H. Komatsu. Fractional powers of operators. Pacific J. Math., 19:285-346, 1966. MathSciNet: MR0201985 · Zbl 0154.16104
[22] T. Kosmala and M. Riedle. Stochastic evolution equations driven by cylindrical stable noise. Stochastic Process. Appl., 149:278-307, 2022. MathSciNet: MR4414849 · Zbl 1489.60113
[23] W. Linde. Probability in Banach spaces—stable and infinitely divisible distributions. John Wiley & Sons, Ltd., Chichester, second edition, 1986. MathSciNet: MR0874529 · Zbl 0665.60005
[24] S. V. Lototsky and B. L. Rozovsky. Stochastic Partial Differential Equations. Universitext. Springer, Cham, 2017. MathSciNet: MR3674586 · Zbl 1375.60010
[25] B. Maslowski. Stability of semilinear equations with boundary and pointwise noise. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 22(1):55-93, 1995. MathSciNet: MR1315350 · Zbl 0830.60056
[26] M. Métivier. Semimartingales: A course on stochastic processes. Walter De Gruyter, 1982. MathSciNet: MR0688144 · Zbl 0503.60054
[27] C. Mueller. The heat equation with Lévy noise. Stochastic Processes and Their Applications, 74(1):67-82, 1998. MathSciNet: MR1624088 · Zbl 0934.60056
[28] L. Mytnik. Stochastic partial differential equation driven by stable noise. Probability Theory and Related Fields, 123(2):157-201, 2002. MathSciNet: MR1900321 · Zbl 1009.60053
[29] K. R. Parthasarathy. Probability measures on metric spaces. Academic Press, New York, 1967. MathSciNet: MR0226684 · Zbl 0153.19101
[30] A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, 1983. MathSciNet: MR0710486 · Zbl 0516.47023
[31] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. MathSciNet: MR2356959 · Zbl 1205.60122
[32] G. Pólya and G. Szegő. Problems and theorems in analysis. I. Classics in Mathematics. Springer-Verlag, Berlin, 1998. MathSciNet: MR1492447
[33] P. Protter. Stochastic integration and differential equations. Springer-Verlag, Berlin, second edition, 2005. MathSciNet: MR2020294
[34] M. Riedle. Stable cylindrical Lévy processes and the stochastic Cauchy problem. Electronic Communications in Probability, 23, 2018. MathSciNet: MR3812068
[35] J Rosinski and W.A. Woyczynski. On Itô stochastic integration with respect to p-stable motion: inner clock, integrability of sample paths, double and multiple integrals. The Annals of Probability, pages 271-286, 1986. MathSciNet: MR0815970 · Zbl 0594.60056
[36] H. L. Royden and P. Fitzpatrick. Real analysis. China Machine Press, fourth edition, 2017.
[37] L. Schwartz. Geometry and probability in Banach spaces, volume 852 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1981. Based on notes taken by Paul R. Chernoff. MathSciNet: MR0612976 · Zbl 0462.46008
[38] I. E. Segal. Abstract probability spaces and a theorem of Kolmogoroff. Amer. J. Math., 76:721-732, 1954. MathSciNet: MR0063602 · Zbl 0056.12301
[39] B. Sz.-Nagy, C. Foias, H. Bercovici, and L. Kérchy. Harmonic Analysis of Operators on Hilbert space. Springer, New York, second edition, 2010. MathSciNet: MR2760647 · Zbl 1234.47001
[40] N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan. Probability distributions on Banach spaces, volume 14 of Mathematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1987. MathSciNet: MR1435288 · Zbl 0698.60003
[41] D. Willett and J.S.W. Wong. On the discrete analogues of some generalizations of Gronwall’s inequality. Monatshefte für Mathematik, 69:362-367, 1965. MathSciNet: MR0185175 · Zbl 0145.06003
[42] D. Williams. Probability with Martingales. Cambridge University Press, 1991. MathSciNet: MR1155402 · Zbl 0722.60001
[43] H. Zhao and S. Xu. A stochastic Fubini theorem for \(α\)-stable process. Statist. Probab. Lett., 160, 2020. MathSciNet: MR4056104 · Zbl 1437.60029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.