×

A Gaschütz-Lubeseder type theorem in a class of locally finite groups. (English) Zbl 0970.20022

The authors develop a Gaschütz-Lubeseder type theorem for a \(c\overline{\mathcal L}\)-formation \(\mathcal F\), \(c\overline{\mathcal L}\) denoting the class of all radical locally finite groups satisfying min-\(p\) for all primes \(p\). Define a semidirect product \(G=[D]M\) to be semiprimitive if \(M\) is a finite soluble group with a trivial core and \(D\) is a divisible Abelian group such that each proper \(M\)-invariant subgroup of \(D\) is finite. The authors relate these two concepts by proving that (a) if \(M\) is a maximal subgroup of \(G\), then \(G/\text{Core}_G(M)\) is a finite primitive soluble group and (b) if \(M\) is not maximal in \(G\), then \(G/\text{Core}_G(M)\) is a semiprimitive group.
Next, the properties imposed on the formations required for a local definition are carefully examined. The relationship between a saturated \(c\overline{\mathcal L}\)-formation \(\mathcal F\) and a semiprimitive group \(G\) is proven to be that \(G\in{\mathcal F}\) if and only if \(G\) is the union of an ascending chain of finite \(\mathcal F\)-subgroups. A \(c\overline{\mathcal L}\)-formation \(\mathcal F\) is said to be \(E_\mu\)-closed, \(\mu(G)\) the intersection of the major subgroups, if \(\mathcal F\) satisfies these properties: (a) A \(c\overline{\mathcal L}\)-group \(G\in{\mathcal F}\) if and only if \(G/\mu(G)\in{\mathcal F}\); (b) A semiprimitive group \(G\) is an \(\mathcal F\)-group if and only if it is the union of an ascending chain \(\{G_i:i\in \mathbb{N}\}\) of finite \(\mathcal F\)-groups. The principal result: A \(c\overline{\mathcal L}\)-formation \(\mathcal F\) is \(E_\mu\)-closed if and only if \(\mathcal F\) is a saturated \(c\overline{\mathcal L}\)-formation.

MSC:

20F17 Formations of groups, Fitting classes
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20F50 Periodic groups; locally finite groups
20E28 Maximal subgroups

References:

[1] Dixon, M.: Sylow theory, formations and Fitting classes in locally finite groups. (1994) · Zbl 0866.20029
[2] Doerk, K.; Hawkes, T.: Finite soluble groups. (1992) · Zbl 0753.20001
[3] Gaschütz, W.: Zur theorie der endlichen auflösbaren gruppen. Math. Z. 80, 300-305 (1963) · Zbl 0111.24402
[4] Gaschütz, W.; Lubeseder, U.: Kennzeichnung gesättigter formationen. Math. Z. 82, 198-199 (1963) · Zbl 0116.25603
[5] Hartley, B.: A dual approach to chernikov modules. Math. proc. Cambridge philos. Soc. 82, 215-239 (1977) · Zbl 0365.20047
[6] Höfling, B.: Schunck classes and projectors of periodic soluble nilpotent-by-finite groups. J. algebra 194, 415-428 (1997) · Zbl 0882.20024
[7] Schunck, H.: H-untergruppen in endlichen auflösbaren gruppen. Math. Z. 97, 326-330 (1967) · Zbl 0158.02802
[8] Tomkinson, M. J.: A Frattini-like subgroup. Math. proc. Cambridge philos. Soc. 77, 247-257 (1975) · Zbl 0301.20018
[9] Tomkinson, M. J.: Major subgroups of nilpotent-by-finite group. Ukraı\"n. mat. Zh. 44, 853-856 (1992) · Zbl 0794.20037
[10] Tomkinson, M. J.: Schunck classes and projectors in a class of locally finite groups. Proc. Edinburgh math. Soc. 38, 511-522 (1995) · Zbl 0841.20042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.