×

The index of projective families of elliptic operators. (English) Zbl 1083.58021

Over a smooth closed manifold \(X\) let \(\mathcal A\) be an Azumaya bundle, a bundle of algebras with local trivializations associating the algebras with \(M_{m}(\mathbb{C})\). \(\mathcal A\) provides the structure needed to define twisted \(K\)-theory groups \(K^{0}(X,\mathcal A)\), which are generated by projective vector bundles. On a fiber bundle \(M\rightarrow X\) with smooth closed manifolds as fibers, the authors describe families of elliptic pseudodifferential operators acting on sections of projective vector bundles pulled back from \(X\). They show that the associated family of Fredholm operators (alternatively, the associated index difference bundle) defines an element of \(K^{0}(X,\mathcal A)\) known as the analytic index of the family, and they show that the symbols define a topological index in \(K^{0}(X,\mathcal A)\). The authors use an axiomatic approach to prove that the analytic index equals the topological index, iė. to generalize the Atiyah-Singer families index theorem to this setting. They also calculate the Chern character of the index and the Chern class of the associated determinant line bundle. Because of the paper’s dependence on finite-dimensional Azumaya algebras, the twisted \(K\)-theory groups treated are those asociated with torsion Dixmier-Douady invariants. String theory is one source of interest in twisted \(K\)-theory.

MSC:

58J22 Exotic index theories on manifolds
19K56 Index theory
46L80 \(K\)-theory and operator algebras (including cyclic theory)

References:

[1] O Alvarez, Cohomology and field theory, World Sci. Publishing (1985) 3
[2] M F Atiyah, I M Singer, The index of elliptic operators IV, Ann. of Math. \((2)\) 93 (1971) 119 · Zbl 0212.28603 · doi:10.2307/1970756
[3] N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1992) · Zbl 0744.58001
[4] P Bouwknegt, A L Carey, V Mathai, M K Murray, D Stevenson, Twisted \(K\)-theory and \(K\)-theory of bundle gerbes, Comm. Math. Phys. 228 (2002) 17 · Zbl 1036.19005 · doi:10.1007/s002200200646
[5] J Dixmier, \(C^*\)-algebras, North-Holland Publishing Co. (1977)
[6] J Dixmier, A Douady, Champs continus d’espaces hilbertiens et de \(C^*\)-algèbres, Bull. Soc. Math. France 91 (1963) 227 · Zbl 0127.33102
[7] P Donovan, M Karoubi, Graded Brauer groups and \(K\)-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. (1970) 5 · Zbl 0207.22003 · doi:10.1007/BF02684650
[8] A Grothendieck, Le groupe de Brauer I: Algèbres d’Azumaya et interprétations diverses, North-Holland (1968) 46 · Zbl 0193.21503
[9] I Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951) 219 · Zbl 0042.34901 · doi:10.2307/1990368
[10] N H Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965) 19 · Zbl 0129.38901 · doi:10.1016/0040-9383(65)90067-4
[11] R Minasian, G Moore, \(K\)-theory and Ramond-Ramond charge, J. High Energy Phys. (1997) · Zbl 0949.81511 · doi:10.1088/1126-6708/1997/11/001
[12] M K Murray, Bundle gerbes, J. London Math. Soc. \((2)\) 54 (1996) 403 · Zbl 0867.55019 · doi:10.1112/jlms/54.2.403
[13] V Nistor, E Troitsky, An index for gauge-invariant operators and the Dixmier-Douady invariant, Trans. Amer. Math. Soc. 356 (2004) 185 · Zbl 1030.46095 · doi:10.1090/S0002-9947-03-03370-1
[14] E M Parker, The Brauer group of graded continuous trace \(C^ *\)-algebras, Trans. Amer. Math. Soc. 308 (1988) 115 · Zbl 0658.46057 · doi:10.2307/2000953
[15] I Raeburn, D P Williams, Morita equivalence and continuous-trace \(C^*\)-algebras, Mathematical Surveys and Monographs 60, American Mathematical Society (1998) · Zbl 0922.46050
[16] M A Rieffel, Morita equivalence for operator algebras, Proc. Sympos. Pure Math. 38, Amer. Math. Soc. (1982) 285 · Zbl 0541.46044
[17] J Rosenberg, Homological invariants of extensions of \(C^*\)-algebras, Proc. Sympos. Pure Math. 38, Amer. Math. Soc. (1982) 35 · Zbl 0502.46052
[18] J Rosenberg, Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A 47 (1989) 368 · Zbl 0695.46031
[19] J Tomiyama, M Takesaki, Applications of fibre bundles to the certain class of \(C^*\)-algebras, Tôhoku Math. J. \((2)\) 13 (1961) 498 · Zbl 0113.09701 · doi:10.2748/tmj/1178244253
[20] K Tsuboi, The Atiyah-Singer index theorem for \(G\)-equivariant real elliptic families, Math. J. Okayama Univ. 36 (1994) · Zbl 0849.58065
[21] E Witten, D-branes and \(K\)-theory, J. High Energy Phys. (1998) · Zbl 0959.81070 · doi:10.1088/1126-6708/1998/12/019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.