×

Spectral continuity for aperiodic quantum systems I. General theory. (English) Zbl 1406.81023

J. Funct. Anal. 275, No. 11, 2917-2977 (2018); corrigendum ibid. 277, No. 9, 3351-3353 (2019).
Summary: How does the spectrum of a Schrödinger operator vary if the corresponding geometry and dynamics change? Is it possible to define approximations of the spectrum of such operators by defining approximations of the underlying structures? In this work a positive answer is provided using the rather general setting of groupoid \(C^\ast\)-algebras. A characterization of the convergence of the spectra by the convergence of the underlying structures is proved. In order to do so, the concept of continuous field of groupoids is slightly extended by adding continuous fields of cocycles. With this at hand, magnetic Schrödinger operators on dynamical systems or Delone systems fall into this unified setting. Various approximations used in computational physics, like the periodic or the finite cluster approximations, are expressed through the tautological groupoid, which provides a universal model for fields of groupoids. The use of the Hausdorff topology turns out to be fundamental in understanding why and how these approximations work.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
46L05 General theory of \(C^*\)-algebras
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
22A22 Topological groupoids (including differentiable and Lie groupoids)

References:

[1] Aarset, C., On the continuity of the spectrum of fields operators, (2016), University of Oslo Spring, Master Thesis
[2] Aharonov, Y.; Bohm, D., Significance of electromagnetic potentials in the quantum theory, Phys. Rev., 115, 485-491, (1959) · Zbl 0099.43102
[3] Anantharaman-Delaroche, C.; Renault, J., Amenable groupoids, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], L’Enseignement Mathématique, 36, (2000), Geneva, with a foreword by Georges Skandalis and Appendix B by E. Germain · Zbl 0960.43003
[4] Anantharaman-Delaroche, C.; Renault, J., Amenable groupoids, (Groupoids in Analysis, Geometry, and Physics, Boulder, CO, Contemp. Math., vol. 282, (1999), Amer. Math. Soc. Providence, RI), 35-46 · Zbl 1016.46042
[5] Anderson, J. E.; Putnam, I. F., Topological invariants for substitution tilings and their associated \(C^\ast\)-algebra, Ergodic Theory Dynam. Systems, 18, 509-537, (1998) · Zbl 1053.46520
[6] Arveson, W., An invitation to \(C^\ast\)-algebras, (1981), Springer-Verlag
[7] Avila, A.; Jitomirskaya, S., The ten martini problem, Ann. of Math., 170, 303-342, (2009) · Zbl 1166.47031
[8] Barnsley, M., Fractals everywhere, (1993), Morgan Kaufmann · Zbl 0691.58001
[9] Beckus, S.; Bellissard, J., Continuity of the spectrum of a field of self-adjoint operators, Ann. Henri Poincaré, 17, 3425-3442, (2016) · Zbl 1354.81018
[10] Beckus, S., Spectral approximation of aperiodic Schrödinger operators, (2016), Friedrich-Schiller-Universität Jena, PhD Thesis
[11] Beckus, S.; Bellissard, J.; De Nittis, G., Spectral continuity for aperiodic quantum systems II. periodic approximations in 1D, (2018)
[12] Bellissard, J., K-theory of \(C^\ast\)-algebras in solid state physics, (Dorlas, T. C.; Hugenholtz, M. N.; Winnink, M., Statistical Mechanics and Field Theory, Mathematical Aspects, Lecture Notes in Physics, vol. 257, (1986)), 99-156 · Zbl 0596.00022
[13] Bellissard, J.; Iochum, B.; Scoppola, E.; Testard, D., Spectral properties of one-dimensional quasi-crystals, Comm. Math. Phys., 125, 3, 527-543, (1989) · Zbl 0825.58010
[14] Bellissard, J., Spectral properties of Schrödinger’s operator with a thue-Morse potential, (Number Theory and Physics, Springer Proc. Phys., vol. 47, (1989), Les Houches), 140-150, (1990), Springer Berlin · Zbl 0719.58038
[15] Bellissard, J.; Bovier, A.; Ghez, J.-M., Spectral properties of a tight binding Hamiltonian with period doubling potential, Comm. Math. Phys., 135, 379-399, (1991) · Zbl 0726.58038
[16] Bellissard, J.; Iochum, B.; Testard, D., Continuity properties of the electronic spectrum of 1D quasicrystals, Comm. Math. Phys., 141, 353-380, (1991) · Zbl 0754.46049
[17] One of the authors (JB) thanks André Katz for pointing out this argument during a conversation in Toulouse in the nineties.; One of the authors (JB) thanks André Katz for pointing out this argument during a conversation in Toulouse in the nineties.
[18] Bellissard, J., Gap labeling theorems for Schrödinger’s operators, (Luck, J. M.; Moussa, P.; Waldschmidt, M., From Number Theory to Physics, Les Houches March, vol. 89, (1993), Springer), 538-630
[19] Bellissard, J.; Herrmann, D.; Zarrouati, M., Hull of aperiodic solids and gap labeling theorems, (Baake, M. B.; Moody, R. V., Directions in Mathematical Quasicrystals, CRM Monograph Series, vol. 13, (2000), AMS Providence), 207-259 · Zbl 0972.52014
[20] Bellissard, J.; Julien, A.; Savinien, J., Tiling groupoids and Bratteli diagrams, Ann. Henri Poincaré, 11, 69-99, (2010) · Zbl 1218.37024
[21] Bellissard, J., Delone sets and material science: a program, (Kellendonk, J.; Lenz, D.; Savinien, J., Mathematics of Aperiodic Order, Progress in Mathematics, vol. 309, (2015), Birkhäuser) · Zbl 1373.82003
[22] Bellissard, J., see talks at
[23] Benza, V. G.; Sire, C., Electronic spectrum of the octagonal quasicrystal: chaos, gaps and level clustering, Phys. Rev. B, 44, 10343-10345, (1991)
[24] Blanchard, E., Déformations de \(C^\ast\)-algébres de Hopf, Bull. Sci. Math., 1, 124, 141-215, (1996) · Zbl 0851.46040
[25] Brown, H. J.; Huef, A., Decomposing the \(C^\ast\)-algebras of groupoid extensions, Proc. Amer. Math. Soc., 142, 4, 1261-1274, (2014) · Zbl 1302.46053
[26] Casdagli, M., Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation, Comm. Math. Phys., 107, 295-318, (1986) · Zbl 0606.39004
[27] Castaing, C.; Valadier, M., Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, vol. 580, (1977), Springer-Verlag Berlin · Zbl 0346.46038
[28] Chabauty, C., Limite d’ensembles et géométrie des nombres, Bull. Soc. Math. France, 78, 143-151, (1950) · Zbl 0039.04101
[29] Clark, L. O., Classifying the types of principal groupoid \(C^\ast\)-algebras, J. Operator Theory, 57, 251-266, (2007) · Zbl 1120.46036
[30] Choi, T. C., Density of states for a two-dimensional Penrose lattice: evidence of a strong Van hove singularity, Phys. Rev. Lett., 55, 2915-2918, (1985)
[31] Connes, A., Sur la théorie non commutative de l’intégration, (Algèbres d’Opérateurs, Lecture Notes in Mathematics, vol. 725, (1979), Springer Berlin), 19-143 · Zbl 0412.46053
[32] Connes, A., A survey of foliations and operator algebras, Proc. Sympos. Pure Math., vol. 38, 521-628, (1982), Amer. Math. Soc. Providence, RI · Zbl 0531.57023
[33] Conway, J. B., A course in functional analysis, Graduate Texts in Mathematics, vol. 96, (1990), Springer Verlag · Zbl 0706.46003
[34] Damanik, D.; Gorodetski, A.; Solomyak, B., Absolutely continuous convolutions of singular measures and an application to the square Fibonacci Hamiltonian, Duke Math. J., 164, 1603-1640, (2015) · Zbl 1358.37117
[35] Damanik, D.; Gorodetski, A.; Yessen, W., The Fibonacci Hamiltonian, Invent. Math., 206, 629-692, (2016) · Zbl 1359.81108
[36] Dinaburg, E. I.; Sinai, Ya. G., The one-dimensional Schrödinger equation with a quasiperiodic potential, Funct. Anal. Appl., 9, 279-289, (1975) · Zbl 0333.34014
[37] Dixmier, J.; Douady, A., Champs continus d’espaces hilbertiens et de \(C^\ast\)-algèbres, Bull. Soc. Math. France, 91, 227-284, (1963) · Zbl 0127.33102
[38] Dixmier, J.; Dixmier, J., \(C^\ast\)-algebras, Cahiers Scientifiques, Fasc., vol. XXIX, (1977), North-Holland Amsterdam-New York-Oxford, (French), Deuxième édition · Zbl 0152.33003
[39] Duneau, M.; Mosseri, R.; Oguey, C., Approximants of quasiperiodic structures generated by the inflation mapping, J. Phys. A, 22, 4549-4564, (1989) · Zbl 0719.52015
[40] Effros, E.; Hahn, H., Locally compact transformation groups and \(C^\ast\)-algebras, Memoirs Amer. Math. Soc., vol. 75, (1967) · Zbl 0166.11802
[41] Elliott, G. A., Gaps in the spectrum of an almost periodic Schrödinger operator, C. R. Math. Rep. Acad. Sci. Can., 4, 255-259, (1982) · Zbl 0516.46048
[42] Exel, R., Invertibility in groupoid \(\mathcal{C}^\ast\)-algebras, Oper. Theory Adv. Appl., vol. 242, 173-183, (2014), Birkhäuser/Springer Basel · Zbl 1322.22005
[43] Fell, J. M.G., The dual space of \(C^\ast\)-algebras, Trans. Amer. Math. Soc., 94, 365-403, (1960) · Zbl 0090.32803
[44] Fell, J. M.G., The structure of algebras of operator fields, Acta Math., 106, 233-380, (1961) · Zbl 0101.09301
[45] Fell, J. M.G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc., 13, 472-476, (1962) · Zbl 0106.15801
[46] Følner, E., On groups with full Banach mean value, Math. Scand., 3, 243-254, (1956) · Zbl 0067.01203
[47] Freudenthal, H., Einige Sätze über topologische gruppen, Ann. of Math., 37, 46-56, (1936), (see p. 53, section 26) · JFM 62.0437.01
[48] Giordano, T.; Putnam, I. F.; Skau, C. F., Full groups of Cantor minimal systems, Israel J. Math., 111, 285-320, (1999) · Zbl 0942.46040
[49] Gottschalk, W. H.; Hedlund, G. A., Topological dynamics, AMS Coll. Pub., vol. 36, (1955), American Mathematical Society Providence, RI · Zbl 0067.15204
[50] Grannan, B. C., Haar measures for groupoids, (2009), Virginia Commonwealth University Richmond VA, in Section 4.3. Document accessible at
[51] Greenleaf, F. P., Invariant means on topological groups and their applications, (1969), Van Nostrand Reinhold · Zbl 0174.19001
[52] Hahn, P., The regular representations of measure groupoids, Trans. Amer. Math. Soc., 242, 35-72, (1978) · Zbl 0356.46055
[53] Hausdorff, F., Grundzüge der mengenlehre, (1914), Leipzig, Veit · JFM 45.0123.01
[54] Hausdorff, F., Mengenlehre, (1935 [1927]), De Gruyter Berlin-Leipzig, republished by Dover Publications, New York, 1944
[55] Hausdorff, F., Set theory, (1962 [1957]), Chelsea Publishing Co. New York, Republished by AMS-Chelsea, 2005 · Zbl 0081.04601
[56] Hulanicki, A., Means and Følner condition on locally compact groups, Studia Math., 27, 87-104, (1966) · Zbl 0165.48701
[57] Julien, A.; Savinien, J., Tiling groupoids and Bratteli diagrams II: structure of the orbit equivalence relation, Ann. Henri Poincaré, 13, 297-332, (2012) · Zbl 1276.37009
[58] Juschenko, K.; Monod, N., Cantor systems, piecewise translations and simple amenable groups, Ann. Math., 178, 2, 775-787, (2013) · Zbl 1283.37011
[59] Kadison, R. V.; Ringrose, J. R., Fundamentals of the theory of operator algebras, vol. I. elementary theory, Graduate Studies in Mathematics, vol. 15, (1997), American Mathematical Society Providence, RI, (Reprint of the 1983 original) · Zbl 0888.46039
[60] Kaplansky, I., The structure of certain algebras of operators, Trans. Amer. Math. Soc., 70, 219-255, (1951) · Zbl 0042.34901
[61] Kastler, D., On A. Connes’ noncommutative integration theory, Comm. Math. Phys., 85, 99-120, (1982) · Zbl 0529.46047
[62] Kellendonk, J., The local structure of tilings and their integer group of coinvariants, Comm. Math. Phys., 187, 115-157, (1997) · Zbl 0887.52013
[63] Kellendonk, J., Pattern-equivariant functions and cohomology, J. Phys. A, 36, 5765-5772, (2003) · Zbl 1055.53029
[64] Kellendonk, J., Pattern equivariant functions, deformations and equivalence of tiling spaces, Ergodic Theory Dynam. Systems, 28, 4, 1153-1176, (2008) · Zbl 1149.52017
[65] Kirchberg, E.; Wassermann, S., Operations on continuous bundles of \(C^\ast\)-algebras, Math. Ann., 303, 677-697, (1995) · Zbl 0835.46057
[66] Kohmoto, M.; Kadanoff, L.; Tang, C., Localization problem in one dimension: mapping and escape, Phys. Rev. Lett., 50, 1870-1872, (1983)
[67] Kohmoto, M.; Sutherland, B., Electronic states on a Penrose lattice, Phys. Rev. Lett., 56, 2740-2743, (1986)
[68] Kramer, B.; MacKinnon, A., Localization: theory and experiments, Rep. Progr. Phys., 56, 1469-1564, (1993)
[69] Krieger, W., On a dimension for a class of homeomorphism groups, Math. Ann., 252, 2, 87-95, (1979/80) · Zbl 0472.54028
[70] Landsman, N. P.; Ramazan, B., Quantization of Poisson algebras associated to Lie algebroids, (Groupoids in Analysis, Geometry, and Physics, Boulder, CO, 1999, Contemp. Math., vol. 282, (2001), Amer. Math. Soc. Providence, RI), 159-192 · Zbl 1013.46053
[71] Latrémolière, F., Approximation of quantum tori by finite quantum tori for the quantum Gromov-Hausdorff distance, (2004), University of California at Berkeley, PhD Thesis · Zbl 1088.46044
[72] Lenz, D.; Stollmann, P., Algebras of random operators associated to Delone dynamical systems, Math. Phys. Anal. Geom., 6, 269, (2003) · Zbl 1031.46078
[73] Lucchetti, R.; Pasquale, A., A new approach to a hyperspace theory, J. Convex Anal., 1, 173-193, (1994) · Zbl 0839.54009
[74] Măntoiu, M.; Purice, R., The algebra of observables in a magnetic field, (Mathematical Results in Quantum Mechanics, Taxco, 2001, Contemp. Math., vol. 307, (2002), Amer. Math. Soc. Providence, RI), 239-245 · Zbl 1032.46081
[75] Măntoiu, M.; Purice, R., Strict deformation quantization for a particle in a magnetic field, J. Math. Phys., 46, (2005) · Zbl 1110.81118
[76] Măntoiu, M.; Purice, R.; Richard, S., Twisted crossed products and magnetic pseudodifferential operators, (Advances in Operator Algebras and Mathematical Physics, Theta Ser. Adv. Math., vol. 5, (2005), Theta Bucharest), 137-172 · Zbl 1199.46158
[77] Michael, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71, 152-182, (1951) · Zbl 0043.37902
[78] Munkres, J., Topology: A first course, (1975), Prentice-Hall, 2nd edn. 1999 · Zbl 0306.54001
[79] Nekrashevych, V., Simple groups of dynamical origin, (2015), Ergodic Theory and Dynamical Systems, in press
[80] Nistor, V.; Prudhon, N., Exhausting families of representations and spectra of pseudodifferential operators, (2015)
[81] Odagaki, T.; Nguyen, D., Electronic and vibrational spectra of two-dimensional quasicrystals, Phys. Rev. B, Phys. Rev. B, 34, 5929-2190, (1986), Erratum:
[82] Ostlund, S.; Pandit, R.; Rand, D.; Schellnhuber, H.; Siggia, E., One-dimensional Schrödinger equation with an almost periodic potential, Phys. Rev. Lett., 50, 1873-1877, (1983)
[83] Ostlund, S.; Kim, S.-H., Renormalization of quasiperiodic mappings, Phys. Scr. T, 9, 193-198, (1985) · Zbl 1063.37526
[84] Parra, D.; Richard, S., Continuity of the spectra for families of magnetic operators on \(\mathbb{Z}^d\), Anal. Math. Phys., 6, 327-343, (2016) · Zbl 1353.81054
[85] Prodan, E., Quantum transport in disordered systems under magnetic fields: a study based on operator algebras, Appl. Math. Res. Express. AMRX, 2013, 176-255, (2013) · Zbl 1318.82041
[86] Reed, M.; Simon, B., II. Fourier analysis, self-adjointness, (Methods of Modern Mathematical Physics, (1975), Elsevier) · Zbl 0308.47002
[87] Renault, J., A groupoid approach to \(C^\ast\)-algebras, Lecture Notes in Math., vol. 793, (1980), Springer Berlin · Zbl 0433.46049
[88] Renault, J., \(C^\ast\)-algebras and dynamical systems, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications] 27o Colóquio Brasileiro de Matemática. [27th Brazilian Mathematics Colloquium], (2009), Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro
[89] Resende, P., Étale groupoids and their quantales, Adv. Math., 208, 147-209, (2007), One of the authors (J.B.) thanks Pedro Resende from the Instituto Superior Técnico, Lisbon, for this information · Zbl 1116.06014
[90] Rieffel, M. A., Continuous fields of \(C^\ast\)-algebras coming from group cocycles and actions, Math. Ann., 283, 4, 631-643, (1989) · Zbl 0646.46063
[91] Rieffel, M. A., Deformation quantization of Heisenberg manifolds, Comm. Math. Phys., 122, 4, 531-562, (1989) · Zbl 0679.46055
[92] Rieffel, M. A., Deformation quantization and operator algebras, (Operator Theory: Operator Algebras and Applications, Part 1, Durham, NH, 1988, Proc. Sympos. Pure Math., vol. 51, Part 1, (1990), Amer. Math. Soc. Providence, RI), 411-423 · Zbl 0715.46038
[93] Rieffel, M. A., Lie group convolution algebras as deformation quantizations of linear Poisson structures, Amer. J. Math., 112, 4, 657-685, (1990) · Zbl 0713.58054
[94] Rieffel, M. A., Deformation quantization for actions of \(\mathbb{R}^d\), Mem. Amer. Math. Soc., 106, 506, (1993) · Zbl 0798.46053
[95] Seda, A. K., A continuity property of Haar systems of measures, Ann. Soc. Sci. Bruxelles Sér. I, 89, 429-433, (1975) · Zbl 0313.28018
[96] Seda, A. K., Haar measures for groupoids, (Proc. Roy. Irish Acad. Sect. A, vol. 76, (1976)), 25-36 · Zbl 0329.43002
[97] Seda, A. K., On the continuity of Haar measure on topological groupoids, (Proc. Amer. Math. Soc., vol. 96, (1986)), 115-120 · Zbl 0593.28015
[98] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W., Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 51, 1951-1953, (1984)
[99] Sire, C., Electronic spectrum of a 2D quasi-crystal related to the octagonal quasi-periodic tiling, Europhys. Lett., 10, 483-488, (1989)
[100] Sire, C.; Bellissard, J., Renormalization group for the octagonal quasi-periodic tiling, Europhys. Lett., 11, 439-443, (1990)
[101] Sütő, A., The spectrum of a quasi-periodic Schrödinger operator, Comm. Math. Phys., 111, 409-415, (1987) · Zbl 0624.34017
[102] Tomiyama, J.; Takesaki, M., Applications of fibre bundles to the certain class of \(C^\ast\)-algebras, Tôhoku Math. J.(2), 13, 498-522, (1961) · Zbl 0113.09701
[103] Tomiyama, J., Topological representation of \(C^\ast\)-algebras, Tôhoku Math. J. (2), 14, 187-204, (1962) · Zbl 0216.16201
[104] Van Hove, L., Quelques propriétés générales de l’intégrales de configuration d’un système de particules avec interaction, Physica, 15, 951-961, (1949) · Zbl 0036.40602
[105] Van Hove, L., Energy corrections and persistent perturbation effects in continuous spectra, Physica, 21, 6-10, 901-923, (1955) · Zbl 0074.22804
[106] Vietoris, L., Bereiche zweiter ordnung, Monatsh. Math. Phys., 32, 1, 258-280, (1922) · JFM 48.0205.02
[107] Weil, A., L’intégration dans LES groupes topologiques et ses applications, Actualités Scientifiques et Industrielles, vol. 869, (1940), Hermann Paris · Zbl 0063.08195
[108] Westman, J., Non transitive groupoid algebras, (Lecture Notes, (1967), University of California at Irvine)
[109] Williams, D. P., Haar systems on equivalent groupoids, Proc. Amer. Math. Soc., 3, 1-8, (2016) · Zbl 1341.22002
[110] Willet, R., A non-amenable groupoid whose maximal and reduced \(C^\ast\)-algebras are the same, Münster J. Math., 8, 241-252, (2015) · Zbl 1369.46064
[111] Zak, J., Magnetic translation groups II: irreducible representations, Phys. Rev. A, Phys. Rev. A, 134, (1964) · Zbl 0131.45404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.