×

Numerical study of stress estimation methods for membrane inflation experiments. (English) Zbl 07853991

MSC:

74Sxx Numerical and other methods in solid mechanics
65Dxx Numerical approximation and computational geometry (primarily algorithms)
74Kxx Thin bodies, structures

Software:

SUNDIALS; CGAL; KINSOL; INMOST
Full Text: DOI

References:

[1] J. D. Humphrey, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs (Springer Science, New York, 2002). doi:10.1007/978-0-387-21576-1
[2] Lu, J.; Zhou, X.; Raghavan, M. L., Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms, J. Biomech., 40, 693-696, 2007 · doi:10.1016/j.jbiomech.2006.01.015
[3] F. Bellacosa Marotti, ‘‘In-vivo mechanical properties of aortic wall tissue,’’ Master Thesis (Politechnico, Milano, 2015). https://www.politesi.polimi.it/handle/10589/114423
[4] Joldes, G. R.; Miller, K.; Wittek, A.; Doyle, B., A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress, J. Mech. Behav. Biomed. Mater., 58, 139-148, 2016 · doi:10.1016/j.jmbbm.2015.07.029
[5] Liu, M.; Liang, L.; Liu, H.; Zhang, M.; Martin, C.; Sun, W., On the computation of in vivo transmural mean stress of patient-specific aortic wall, Biomech. Model. Mechanobiol., 18, 387-398, 2019 · doi:10.1007/s10237-018-1089-5
[6] Miller, K.; Lu, J., On the prospect of patient-specific biomechanics without patient-specific properties of tissues, J. Mech. Behav. Biomed. Mater., 27, 154-166, 2013 · doi:10.1016/j.jmbbm.2013.01.013
[7] Celi, S.; Gasparotti, E.; Capellini, K.; Bardi, F.; Scarpolini, M. A.; Cavaliere, C.; Cademartiri, F.; Vignali, E., An image-based approach for the estimation of arterial local stiffness in vivo, Front. Bioeng. Biotechnol., 11, 1-13, 2023 · doi:10.3389/fbioe.2023.1096196
[8] T. Gasser, C. Miller, S. Polzer, and J. Roy, ‘‘A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments,’’ Int. J. Numer. Method. Biomed. Eng. 39, e3587 (2023). doi:10.1002/cnm.3587
[9] Liu, M.; Liang, L.; Sun, W., A new inverse method for estimation of in vivo mechanical properties of the aortic wall, J. Mech. Behav. Biomed. Mater., 72, 148-158, 2017 · doi:10.1016/j.jmbbm.2017.05.001
[10] Cosentino, F.; Agnese, V.; Raffa, G. M.; Gentile, G.; Bellavia, D.; Zingales, M.; Pilato, M.; Pasta, S., On the role of material properties in ascending thoracic aortic aneurysms, Comput. Biol. Med., 109, 70-78, 2019 · doi:10.1016/j.compbiomed.2019.04.022
[11] Lu, J.; Zhou, X.; Raghavan, M. L., Inverse method of stress analysis for cerebral aneurysms, Biomech. Model. Mechanobiol., 7, 477-486, 2008 · doi:10.1007/s10237-007-0110-1
[12] Kyriacou, S.; Humphrey, J.; Schwab, C., Finite element analysis of nonlinear orthotropic hyperelastic membranes, Comput. Mech., 18, 269-278, 1996 · Zbl 0864.73067 · doi:10.1007/BF00364142
[13] Green, A. E.; Adkins, J. E., Large Elastic Deformations and Non-Linear Continuum Mechanics, 1960, Oxford: Oxford Univ. Press, Oxford · Zbl 0090.17501
[14] Cazals, F.; Pouget, M., Estimating differential quantities using polynomial fitting of osculating jets, Comput. Aided Geom. Des., 22, 121-146, 2005 · Zbl 1084.65017 · doi:10.1016/j.cagd.2004.09.004
[15] Flores, F.; Onate, E., Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach, Comput. Methods Appl. Mech. Eng., 194, 907-932, 2005 · Zbl 1112.74510 · doi:10.1016/j.cma.2003.08.012
[16] M. Pouget and F. Cazals, Estimation of Local Differential Properties of Point-Sampled Surfaces, CGAL Editorial Board, 5.6 edition, 2023. https://doc.cgal.org/5.5.3/Jet_fitting_3. · Zbl 1083.68134
[17] Salamatova, V.; Liogky, A., Method of hyperelastic nodal forces for deformation of nonlinear membranes, Differ. Equat., 56, 950-958, 2020 · Zbl 1447.74028 · doi:10.1134/S0012266120070137
[18] A. Hindmarsh et al., ‘‘User documentation for kinsol v5.7.0 (sundials v5.7.0),’’ Tech. Report (2021). https://computing.llnl.gov/sites/default/files/kin_guide.pdf.
[19] Terekhov, K.; Danilov, A.; Konshin, I.; Vassilevski, Y., Parallel software platform INMOST: A framework for numerical modeling, Supercomput. Front. Innov., 2, 55-66, 2016 · doi:10.14529/jsfi150404
[20] Abbasi, M.; Barakat, M.; Dvir, D.; Azadani, A., A non-invasive material characterization framework for bioprosthetic heart valves, Ann. Biomed. Eng., 47, 97-112, 2019 · doi:10.1007/s10439-018-02129-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.