×

Anistropic creep modeling based on elastic projection operators with applications to CMSX-4 superalloy. (English) Zbl 1141.74322

Summary: This paper presents a unified framework for creep modeling of anisotropic materials, which is specified in more detail to the cases of isotropy, cubic symmetry and transverse isotropy. To this end an additive decomposition of the elastic and inelastic strain tensors into dilational and isochoric Kelvin modes is assumed. Each of these modes is obtained from fourth-order projection operators, resulting from solution of the eigenvalue problem for the anisotropic fourth-order elasticity tensor. The amount of strain rate for each mode is modeled with a Norton-type ansatz in terms of an equivalent stress. The formulation for the equivalent stress in terms of quadratic forms with aid of the projection operators is compared with polynomial expressions from the literature. The experimental phenomenon of primary creep is taken into account by a back stress tensor of Armstrong-Frederick type, which is also decomposed into Kelvin modes. As a consequence of the mode decomposition the classical radial-return method of isotropic elasto-plasticity is generalized to the different cases of anisotropy. Furthermore the implications on parameter identification are addressed. Two numerical examples are concerned with a superalloy CMSX-4.

MSC:

74E10 Anisotropy in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S05 Finite element methods applied to problems in solid mechanics

Software:

MuPAD; ABAQUS
Full Text: DOI

References:

[1] ABAQUS Standard, Version 5.8, Theory Manual, Hibbett, Karlsson & Sorensen Inc., 1998; ABAQUS Standard, Version 5.8, Theory Manual, Hibbett, Karlsson & Sorensen Inc., 1998
[2] Altenbach, H., Consideration of stress state influences in the material modelling of creep and damage, (Murakami, S.; Ohno, N., 5th IUTAM Symposium on Creep in Structures (2001), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 141-150
[3] Altenbach, H.; Altenbach, J.; Zolochevsky, A., Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik (1995), Deutscher Verlag für Grundstoffindustrie: Deutscher Verlag für Grundstoffindustrie Stuttgart
[4] Arramon, Y. P.; Mehrabadi, M. M.; Martin, D. W.; Cowin, S. C., A multidimensional anisotropic strength criterion based on Kelvin modes, Int. J. Solids Struct., 37, 2915-2935 (2000) · Zbl 0992.74063
[5] Bertram, A.; Olschewski, J., Zur Formulierung anisotroper linearer anelastischer Stoffgleichungen mit Hilfe einer Projektionsmethode, ZAMM, 73, 4/5, T401-T403 (1993) · Zbl 0813.73003
[6] Bertram, A.; Olschewski, J., Anisotropic creep modelling of the single crystal superalloy SRR99, Comput. Math. Sci., 5, 12-16 (1996)
[7] Betten, J., Mathematical modelling of materials behavior under creep conditions, Appl. Mech. Rev., 54, 2, 107-132 (2001)
[8] Dame, L. T.; Stouffer, D. C., A crystallographic model for nickel base single crystal alloys, J. Appl. Mech., 55, 325-331 (1988)
[9] Engelin-Müllges, G.; Reuter, F., Formelsammlung zur numerischen Mathematik mit Standard-FORTRAN 77 Programmen (1988), BI-Wissenschaftsverlag: BI-Wissenschaftsverlag Mannheim · Zbl 0674.65001
[10] G. Fleury, F. Schubert, Anisotrope Stoffgesetze für das viskoplastische Verformungsverhalten der einkristallinen Superlegierung CMSX-4, Dissertation, Forschungszentrum Jülich, Germany, Bericht Nr. Jül-3436, 1997; G. Fleury, F. Schubert, Anisotrope Stoffgesetze für das viskoplastische Verformungsverhalten der einkristallinen Superlegierung CMSX-4, Dissertation, Forschungszentrum Jülich, Germany, Bericht Nr. Jül-3436, 1997
[11] Gerhard, J.; Oevel, W.; Postel, F.; Wehmeier, S., Mupad Tutorial (2000), Springer: Springer Berlin · Zbl 1007.68211
[12] Green, A. E.; Atkins, J. E., Large Elastic Deformations and Non-linear Continuum Mechanics (1960), Clarendon Press: Clarendon Press Oxford, UK · Zbl 0090.17501
[13] Haupt, P., Continuum Mechanics and Theory of Materials (2000), Springer: Springer Berlin · Zbl 0938.74001
[14] Johansson, M.; Mahnken, R.; Runesson, K., Efficient integration technique for generalized viscoplasticity coupled to damage, Int. J. Numer. Methods Engrg., 44, 1727-1747 (1999) · Zbl 0945.74070
[15] Jordan, E. H.; Walker, K. P., A viscoplastic model for single crystals, J. Engrg. Mater. Technol., 114, 19-26 (1992)
[16] Lord Kelvin (W. K. Thomson), Elements of a mathematical theory of elasticity, Philos. Trans. Roy. Soc., 166, 481-498 (1856)
[17] Nouailhas, D.; Freed, A. D., A viscoplastic theory for anisotropic materials, J. Engrg. Mater. Technol., 114, 97-104 (1992)
[18] R. Mahnken, Duale Verfahren für nichtlineare Optimierungsprobleme in der Strukturmechanik, Dissertation, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, F 92/3, 1992; R. Mahnken, Duale Verfahren für nichtlineare Optimierungsprobleme in der Strukturmechanik, Dissertation, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, F 92/3, 1992
[19] R. Mahnken, Theoretische und numerische Aspekte zur Parameteridentifikation und Modellierung bei metallischen Werkstoffen, Habilitation, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, F98/2, 1998; R. Mahnken, Theoretische und numerische Aspekte zur Parameteridentifikation und Modellierung bei metallischen Werkstoffen, Habilitation, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover, F98/2, 1998
[20] Mahnken, R., A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification, Comput. Struct., 74, 2, 179-200 (2000)
[21] Mahnken, R.; Johansson, M.; Runesson, K., Parameter estimation for a viscoplastic damage model using a gradient-based optimization algorithm, Engrg. Comput., 15, 7, 925-955 (1998) · Zbl 0941.74041
[22] Mehrabadi, M. M.; Cowin, S. C., Eigentensors of linear anisotropic elastic materials, Quart. J. Mech. Appl. Math., 43, Pt.1, 15-41 (1990) · Zbl 0698.73002
[23] Poirier, J.-P., Creep of Crystals, High-temperature Deformation Processes in Metals, Ceramics and Minerals (1985), Cambridge University Press: Cambridge University Press Cambridge
[24] Qi, W.; Bertram, A., Anisotropic creep damage modeling of single crystal superalloys, Tech. Mech., 17, 4, 313-322 (1997)
[25] Rychlewski, J., On thermoelastic constants, Arch. Mech., 36, 1, 77-95 (1984) · Zbl 0551.73011
[26] Schreyer, H. L.; Zuo, Q. H., Anisotropic yield surfaces based on elastic projection operators, ASME J. Appl. Mech., 62, 3, 780-785 (1995) · Zbl 0848.73023
[27] Simo, J. C.; Hughes, T. J.R., Computational inelasticity, (Interdisciplinary Applied Mathematics. Vol. 7: Mechanics and Materials (1998), Springer: Springer Berlin) · Zbl 0934.74003
[28] Smith, G. G.; Rivlin, R. S., The strain-energy function for anisotropic elastic materials, Trans. Am. Math. Soc., 88, 175-193 (1958) · Zbl 0089.23505
[29] Spencer, A. J.M., The formulation of constitutive equations for anisotropic solids, (Boehler, J. P., Mechanical Behavior of Anisotropic Solids (1982), Nijhoff, The Hague and Editions du CNRS: Nijhoff, The Hague and Editions du CNRS Paris), 2-26 · Zbl 0103.17703
[30] Stouffer, D. C.; Dame, L. T., Inelastic Deformation of Metals (1996), Wiley: Wiley New York
[31] T.M. Polloch, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S.L. Olsen, J.J. Schirra (Eds.), Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys, September 17-21, 2000, Seven Springs, PA, TMS Publication, Warrendale, 2000; T.M. Polloch, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S.L. Olsen, J.J. Schirra (Eds.), Superalloys 2000, Proceedings of the 9th International Symposium on Superalloys, September 17-21, 2000, Seven Springs, PA, TMS Publication, Warrendale, 2000
[32] Sutcliffe, S., Spectral decomposition of the elasticity tensor, ASME J. Appl. Mech., 59, 762-773 (1992) · Zbl 0770.73013
[33] Trusdell, C.; Noll, W., The non-linear field theories of mechanics, (Flügge, S., Encyclopedia of Physics, vol. III/3 (1960), Springer: Springer Berlin) · Zbl 0779.73004
[34] Wilkins, M. L., Calculation of elastic-plastic flow, (Alder, B.et al., Methods of Computational Physics 3 (1964), Academic Press: Academic Press New York)
[35] Zolochevskii, A. A., Method of calculating the strength of mine pipes formed from materials that behave differently under tension and compression, Strength of Materials, 22, 3, 422-428 (1990), (transl. Problemy Prochnosti)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.