×

Effect of constitutive law on the erythrocyte membrane response to large strains. (English) Zbl 1524.74123

Summary: Three constitutive laws, that is the Skalak, neo-Hookean and Yeoh laws, commonly employed for describing the erythrocyte membrane mechanics are theoretically analyzed and numerically investigated to assess their accuracy for capturing erythrocyte deformation characteristics and morphology. Particular emphasis is given to the nonlinear deformation regime, where it is known that the discrepancies between constitutive laws are most prominent. Hence, the experiments of optical tweezers and micropipette aspiration are considered here, for which relationships between the individual shear elastic moduli of the constitutive laws can also be established through analysis of the tension-deformation relationship. All constitutive laws were found to adequately predict the axial and transverse deformations of a red blood cell subjected to stretching with optical tweezers for a constant shear elastic modulus value. As opposed to Skalak law, the neo-Hookean and Yeoh laws replicated the erythrocyte membrane folding, that has been experimentally observed, with the trade-off of sustaining significant area variations. For the micropipette aspiration, the suction pressure-aspiration length relationship could be excellently predicted for a fixed shear elastic modulus value only when Yeoh law was considered. Importantly, the neo-Hookean and Yeoh laws reproduced the membrane wrinkling at suction pressures close to those experimentally measured. None of the constitutive laws suffered from membrane area compressibility in the micropipette aspiration case.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Z05 Physiological flows
76M15 Boundary element methods applied to problems in fluid mechanics
92C10 Biomechanics
76D07 Stokes and related (Oseen, etc.) flows
74K15 Membranes
Full Text: DOI

References:

[1] Zarda, P. R.; Chien, S.; Skalak, R., Elastic deformations of red blood cells, J. Biomech., 10, 211-221 (1977)
[2] Fischer, T. M.; Haest, C. W.; Stöhr-Liesen, M.; Schmid-Schönbein, H.; Skalak, R., The stress-free shape of the red blood cell membrane, Biophys. J., 34, 409-422 (1981)
[3] Discher, D. E.; Boal, D. H.; Boey, S. K., Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration, Biophys. J., 75, 1584-1597 (1998)
[4] Dao, M.; Lim, C. T.; Suresh, S., Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids, 51, 2259-2280 (2003)
[5] Peng, Z.; Asaro, R. J.; Zhu, Q., Multiscale simulation of erythrocyte membranes, Phys. Rev. E, 81, Article 031904 pp. (2010)
[6] Cordasco, D.; Yazdani, A.; Bagchi, P., Comparison of erythrocyte dynamics in shear flow under different stress-free configurations, Phys. Fluids, 26, Article 041902 pp. (2014)
[7] Tsubota, K.; Wada, S.; Liu, H., Elastic behavior of a red blood cell with the membrane’s nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion, Biomech. Model. Mechanobiol., 13, 735-746 (2014)
[8] Sinha, K.; Graham, M. D., Dynamics of a single red blood cell in simple shear flow, Phys. Rev. E, 92, Article 042710 pp. (2015)
[9] Sigüenza, J.; Mendez, S.; Nicoud, F., How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics?, Biomech. Model. Mechanobiol., 16, 1645-1657 (2017)
[10] Mills, J. P.; Qie, L.; Dao, M.; Lim, C. T.; Suresh, S., Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, Mech. Chem. Biosyst., 1, 169-180 (2004)
[11] Dimitrakopoulos, P., Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: effects of the constitutive law and membrane modeling, Phys. Rev. E, 85, Article 041917 pp. (2012)
[12] Abkarian, M.; Faivre, M.; Viallat, A., Swinging of red blood cells under shear flow, Phys. Rev. Lett., 98, Article 188302 pp. (2007)
[13] Fischer, T. M., Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium, Biophys. J., 93, 2553-2561 (2007)
[14] Dodson, W. R.; Dimitrakopoulos, P., Oscillatory tank-treading motion of erythrocytes in shear flows, Phys. Rev. E, 84, Article 011913 pp. (2011)
[15] Yazdani, A. Z.K.; Bagchi, P., Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow, Phys. Rev. E, 84, Article 026314 pp. (2011)
[16] Cordasco, D.; Bagchi, P., Orbital drift of capsules and red blood cells in shear flow, Phys. Fluids, 25, Article 091902 pp. (2013)
[17] Mauer, J.; Mendez, S.; Lanotte, L.; Nicoud, F.; Abkarian, M.; Gompper, G.; Fedosov, D. A., Flow-induced transitions of red blood cell shapes under shear, Phys. Rev. Lett., 121, Article 118103 pp. (2018)
[18] Hochmuth, R. M.; Worthy, P. R.; Evans, E. A., Red cell extensional recovery and the determination of membrane viscosity, Biophys. J., 26, 101-114 (1979)
[19] Evans, E. A., Structure and deformation properties of red blood cells: concepts and quantitative methods, Methods Enzymol., 173, 3-35 (1989)
[20] Guglietta, F.; Behr, M.; Biferale, L.; Falcucci, G.; Sbragaglia, M., On the effects of membrane viscosity on transient red blood cell dynamics, Soft Matter, 16, 6191-6205 (2020)
[21] Li, P.; Zhang, J., Similar but dinstinct roles of membrane and interior fluid viscosities in capsule dynamics in shear flows, Cardiovasc. Eng. Technol., 12, 232-249 (2021)
[22] Matteoli, P.; Nicoud, F.; Mendez, S., Impact of the membrane viscosity on the tank-treading behavior of red blood cells, Phys. Rev. Fluids, 6, Article 043602 pp. (2021)
[23] Guglietta, F.; Behr, M.; Falcucci, G.; Sbragaglia, M., Loading and relaxation dynamics of a red blood cell, Soft Matter, 17, 5978-5990 (2021)
[24] Guglietta, F.; Behr, M.; Biferale, L.; Falcucci, G.; Sbragaglia, M., Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity, Philos. Trans. R. Soc. A, 379, Article 20200395 pp. (2021)
[25] Barthès-Biesel, D.; Diaz, A.; Dhenin, E., Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation, J. Fluid Mech., 460, 211-222 (2002) · Zbl 1066.74023
[26] Ramanujan, S.; Pozrikidis, C., Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities, J. Fluid Mech., 361, 117-143 (1998) · Zbl 0921.76058
[27] Lac, E.; Barthès-Biesel, D.; Pelekasis, N. A.; Tsamopoulos, J., Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling, J. Fluid Mech., 516, 303-334 (2004) · Zbl 1131.74306
[28] Walter, J.; Salsac, A.-V.; Barthès-Biesel, D., Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes, J. Fluid Mech., 676, 318-347 (2011) · Zbl 1241.76127
[29] Dodson, W. R.; Dimitrakopoulos, P., Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an artificial spectral boundary element algorithm for elastic membranes, J. Fluid Mech., 641, 263-296 (2009) · Zbl 1183.76825
[30] Lefebvre, Y.; Barthès-Biesel, D., Motion of a capsule in a cylindrical tube: effect of membrane pre-stress, J. Fluid Mech., 589, 157-181 (2007) · Zbl 1141.76367
[31] Tsiglifis, K.; Pelekasis, N. A., Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law, J. Acoust. Soc. Am., 123, 4059-4070 (2008)
[32] Carin, M.; Barthès-Biesel, D.; Edwards-Lévy, F.; Postel, C.; Andrei, D. C., Compression of biocompatible liquid-filled HSA-alginate capsules: determination of the membrane mechanical properties, Biotechnol. Bioeng., 82, 207-212 (2003)
[33] Risso, F.; Carin, M., Compression of a capsule: mechanical laws of membranes with negligible bending stiffness, Phys. Rev. E, 69, Article 061601 pp. (2004)
[34] Rachik, M.; Barthes-Biesel, D.; Carin, M.; Edwards-Levy, F., Identification of the elastic properties of an artificial capsule membrane with the compression test: effect of thickness, J. Colloid Interface Sci., 301, 217-226 (2006)
[35] Hu, X.-Q.; Sévénié, B.; Salsac, A.-V.; Leclerc, E.; Barthès-Biesel, D., Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: effects of the membrane constitutive law, Phys. Rev. E, 87, Article 063008 pp. (2013)
[36] de Loubens, C.; Deschamps, J.; Boedec, G.; Leonetti, M., Stretching of capsules in an elongation flow, a route to constitutive law, J. Fluid Mech., 767, R3 (2015)
[37] Müller, S. J.; Weigl, F.; Bezold, C.; Bächer, C.; Albrecht, K.; Gekle, S., A hyperelastic model for simulating cells in flow, Biomech. Model. Mechanobiol., 20, 509-520 (2021)
[38] Pozrikidis, C., Modeling and Simulation of Capsules and Biological Cells (2003), Chapman & Hall/CRC · Zbl 1026.92002
[39] Barthès-Biesel, D., Motion and deformation of elastic capsules and vesicles in flow, Annu. Rev. Fluid Mech., 48, 25-52 (2016) · Zbl 1356.76459
[40] Mebius, R. E.; Kraal, G., Structure and function of the spleen, Nat. Rev. Immunol., 5, 606-616 (2004)
[41] Hénon, S.; Lenormand, G.; Richert, A.; Gallet, F., A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers, Biophys. J., 76, 1145-1151 (1999)
[42] Yoon, Y.-Z.; Kotar, J.; Yoon, G.; Cicuta, P., The nonlinear mechanical response of the red blood cell, Phys. Biol., 5, Article 036007 pp. (2008)
[43] Evans, E. A.; La Celle, P. L., Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation, Blood, 45, 29-43 (1975)
[44] Chien, S.; Sung, K.-L. P.; Skalak, R.; Usami, S.; Tözeren, A., Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane, Biophys. J., 24, 463-487 (1978)
[45] Waugh, R.; Evans, E. A., Thermoelasticity of red blood cell membrane, Biophys. J., 26, 115-132 (1979)
[46] Linderkamp, O.; Meiselman, H. J., Geometric, osmotic, and membrane mechanical properties of density-separated human red cells, Blood, 59, 1121-1127 (1982)
[47] Evans, E.; Mohandas, N.; Leung, A., Static and dynamic rigidities of normal and sickle eythrocytes, J. Clin. Invest., 73, 477-488 (1984)
[48] Freund, J. B., Numerical simulation of flowing blood cells, Annu. Rev. Fluid Mech., 46, 67-95 (2014) · Zbl 1297.76198
[49] Pozrikidis, C., Numerical simulation of the flow-induced deformation of red blood cells, Ann. Biomed. Eng., 31, 1194-1205 (2003)
[50] Bagchi, P.; Johnson, P. C.; Popel, A. S., Computational fluid dynamic simulation of aggregation of deformable cells in shear flow, J. Biomech. Eng., 127, 1070-1080 (2005)
[51] Bagchi, P., Mesoscale simulation of blood flow in small vessels, Biophys. J., 92, 1858-1877 (2007)
[52] Zhang, J.; Johnson, P. C.; Popel, A. S., Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method, J. Biomech., 41, 47-55 (2008)
[53] Balogh, P.; Bagchi, P., A computational approach to modeling cellular-scale blood flow in complex geometry, J. Comput. Phys., 334, 280-307 (2017)
[54] Bronkhorst, P. J.H.; Streekstra, G. J.; Grimbergen, J.; Nijhof, E. J.; Sixma, J. J.; Brakenhoff, G. J., A new method to study shape recovery of red blood cells using multiple optical trapping, Biophys. J., 69, 1666-1673 (1995)
[55] Chien, S., Red cell deformability and its relevance to blood flow, Annu. Rev. Physiol., 49, 177-192 (1987)
[56] Suresh, S., Mechanical response of human red blood cells in health and disease: some structure-property-function relationships, J. Mater. Res., 21, 1871-1877 (2006)
[57] Randles, A. P.; Kale, V.; Hammond, J.; Gropp, W.; Kaxiras, E., Performance analysis of the lattice Boltzmann model beyond Navier-Stokes, (27th IEEE International Parallel and Distributed Processing Symposium. 27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013 (2013), IEEE), 1063-1074
[58] Randles, A.; Draeger, E. W.; Bailey, P. E., Massively parallel simulations of hemodynamics in the primary large arteries of the human vasculature, J. Comput. Sci., 9, 70-75 (2015)
[59] Randles, A.; Draeger, E. W.; Oppelstrup, T.; Krauss, L.; Gunnels, J. A., Massively parallel models of the human circulatory system, (Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2015)), 1-11
[60] Roychowdhury, S.; Gounley, J.; Randles, A., Evaluating the influence of hemorheological parameters on circulating tumor cell trajectory and simulation time, (Proceedings of the Platform for Advanced Scientific Computing Conference. Proceedings of the Platform for Advanced Scientific Computing Conference, PASC ’20 (2020)), 1-10
[61] Ames, J.; Puleri, D. F.; Balogh, P.; Gounley, J.; Draeger, E. W.; Randles, A., Multi-GPU immersed boundary method hemodynamics simulations, J. Comput. Sci., 44, Article 101153 pp. (2020)
[62] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609
[63] Guo, Z.; Zheng, C.; Shi, B., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65, Article 046308 pp. (2002) · Zbl 1244.76102
[64] Zhang, J.; Johnson, P. C.; Popel, A. S., An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows, Phys. Biol., 4, 285-295 (2007)
[65] Pivkin, I. V.; Karniadakis, G. E., Accurate coarse-grained modeling of red blood cells, Phys. Rev. Lett., 101, Article 118105 pp. (2008)
[66] Evans, E.; Fung, Y.-C., Improved measurements of the erythrocyte geometry, Microvasc. Res., 4, 335-347 (1972)
[67] Skalak, R.; Tozeren, A.; Zarda, R. P.; Chien, S., Strain energy function of red blood cell membranes, Biophys. J., 13, 245-264 (1973)
[68] Yeoh, O. H., Some forms of the strain energy function for Rubber, Rubber Chem. Technol., 66, 754-771 (1993)
[69] Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch., C, 28, 693-703 (1973)
[70] Evans, E. A., Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests, Biophys. J., 43, 27-30 (1983)
[71] Yazdani, A. Z.K., Dynamics of erythrocytes, vesicles and capsules in shear flow (2012), Rutgers University, Ph.D. thesis
[72] Loop, C., Smooth Subdivision Surfaces Based on Triangles (1987), The University of Utah, Master’s thesis
[73] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Int. J. Numer. Methods Eng., 47, 2039-2072 (2000) · Zbl 0983.74063
[74] Krüger, T.; Varnik, F.; Raabe, D., Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comput. Math. Appl., 61, 3485-3505 (2011) · Zbl 1225.76231
[75] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[76] Evans, E. A., New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells, Biophys. J., 13, 941-954 (1973)
[77] Evans, E. A., A new material concept for the red cell membrane, Biophys. J., 13, 926-940 (1973)
[78] Brown, P. H.; Balbo, A.; Zhao, H.; Ebel, C.; Schuck, P., Density contrast sedimentation velocity for the determination of protein partial-specific volumes, PLoS ONE, 6, Article e26221 pp. (2011)
[79] Fedosov, D. A.; Caswell, B.; Karniadakis, G. E., Systematic coarse-graining of spectrin-level red blood cell models, Comput. Methods Appl. Mech. Eng., 199, 1937-1948 (2010) · Zbl 1231.74311
[80] Mohandas, N.; Gallagher, P. G., Red cell membrane: past, present, and future, Blood, 112, 3939-3948 (2008)
[81] Hecht, M.; Harting, J., Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations, J. Stat. Mech., 2010, Article P01018 pp. (2010)
[82] He, X.; Zou, Q.; Luo, L.-S.; Dembo, M., Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys., 87, 115-136 (1997) · Zbl 0937.82043
[83] Hochmuth, R. M.; Waugh, R. E., Erythrocyte membrane elasticity and viscosity, Annu. Rev. Physiol., 49, 209-219 (1987)
[84] Green, A. E.; Adkins, J. E., Large Elastic Deformations (1960), Oxford University Press · Zbl 0090.17501
[85] Walter, J.; Salsac, A.-V.; Barthès-Biesel, D.; Le Tallec, P., Coupling of finite element and boundary integral methods for a capsule in a Stokes flow, Int. J. Numer. Methods Eng., 83, 829-850 (2010) · Zbl 1197.74187
[86] Boedec, G.; Leonetti, M.; Jaeger, M., Isogeometric FEM-BEM simulations of drop, capsule and vesicle dynamics in Stokes flow, J. Comput. Phys., 342, 117-138 (2017) · Zbl 1376.74008
[87] Gounley, J.; Boedec, G.; Jaeger, M.; Leonetti, M., Influence of surface viscosity on droplets in shear flow, J. Fluid Mech., 791, 464-494 (2016) · Zbl 1382.76260
[88] Le, D.-V., Subdivision elements for large deformation of liquid capsules enclosed by thin shells, Comput. Methods Appl. Mech. Eng., 199, 2622-2632 (2010) · Zbl 1231.74425
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.