×

The spine of a Fourier-Stieltjes algebra. (English) Zbl 1113.43004

In [J. Math. Soc. Japan 23, 278–294 (1971; Zbl 0212.15001)] J. Inoue defined, for a locally compact abelian group \(G\), a certain subalgebra \(L^\ast(G)\) of \(M(G)\) that was later dubbed the spine of \(M(G)\) by J. L. Taylor.
In the (very interesting) paper under review, the authors extend Inoue’s construction to general – not necessarily abelian – locally compact groups \(G\) by adopting a dual point of view and define the spine \(A^\ast(G)\) as a closed subalgebra of \(B(G)\), Eymard’s Fourier–Stieltjes algebra. We briefly outline their construction.
Let \({\mathcal T}(G)\) denote the collection of all so-called locally precompact group topologies on \(G\), i.e., each \(\tau \in {\mathcal T}(G)\) is a Hausdorff topology coarser than the given one such that the completion \(G_\tau\) of \(G\) with respect to the left (or, equivalently, right) uniformity generated by \(\tau\) is a locally compact group. It is straightforward that \(B(G)\) contains a canonical image \(A_\tau(G)\) of \(A(G_\tau)\) for each \(\tau \in {\mathcal T}(G)\). The authors define the spine of \(B(G)\) as \[ A^\ast(G) = \overline{\sum_{\tau \in {\mathcal T}(G)} A_\tau(G)}. \]
Let \(G^{ap}\) denote the almost periodic compactification of \(G\), and let \(\tau_{ap} \in {\mathcal T}(G)\) denote the topology arising from the canonical map from \(G\) into \(G^{ap}\). Those \(\tau \in {\mathcal T}(G)\) that are finer than \(\tau_{ap}\) are called non-quotient topologies; the collection of all non-quotient topologies is denoted by \({\mathcal T}_{nq}(G)\). Somewhat surprisingly, \({\mathcal T}_{nq}(G)\) is a semilattice, and \(A^\ast(G)\) is a graded Banach algebra over it.
The authors study \(A^\ast(G)\) in great detail. For instance, they describe its character space, and study the completely bounded homomorphisms from \(A^\ast(G)\) into \(B(H)\) where \(H\) is another locally compact group (this builds on earlier work of theirs; see [M. Ilie, M. and N. Spronk, J. Funct. Anal. 225, 480–499 (2005; Zbl 1077.43004)]). Finally, they give concrete descriptions of \(A^\ast(G)\) for a number of specific locally compact groups \(G\).

MSC:

43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
22D05 General properties and structure of locally compact groups
43A60 Almost periodic functions on groups and semigroups and their generalizations (recurrent functions, distal functions, etc.); almost automorphic functions
47L50 Dual spaces of operator algebras
46L07 Operator spaces and completely bounded maps
22B05 General properties and structure of LCA groups

References:

[1] Arsac, Sur lespace de Banach engendré par les coefficients dune représentation unitaire, Pub. Dép. Math. Lyon 13 pp 1– (1976)
[2] Austin, Duality theorems for some commutative semigroups, Trans. Amer. Math. Soc. 109 pp 245– (1963) · Zbl 0118.26501 · doi:10.1090/S0002-9947-1963-0153776-7
[3] Bekka, On invariant subalgebras of the Fourier-Stieltjes algebra of a locally compact group, Math. Ann. 294 pp 513– (1992) · Zbl 0787.22005 · doi:10.1007/BF01934339
[4] Berglund, Analysis on semigroups: function spaces, compactifications, representations (1989) · Zbl 0727.22001
[5] Blecher, The standard dual of an operator space, Pacific Math. J. 153 pp 15– (1992) · Zbl 0726.47030 · doi:10.2140/pjm.1992.153.15
[6] Blecher, Tensor products of operator spaces, J. Funct. Anal. 99 pp 262– (1991) · Zbl 0786.46056 · doi:10.1016/0022-1236(91)90042-4
[7] Cassels, Global fields, in: Algebraic number theory pp 42– (1967)
[8] Chou, Minimally weakly almost periodic groups, J. Funct. Anal. 36 pp 1– (1980) · Zbl 0437.22007 · doi:10.1016/0022-1236(80)90103-2
[9] Clifford, Semigroups admitting relative inverses, Ann. of Math. 42 pp 1037– (1941) · Zbl 0063.00920 · doi:10.2307/1968781
[10] Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 pp 191– (1960) · Zbl 0099.25504 · doi:10.2307/2372731
[11] Cohen, On homomorphisms of group algebras, Amer. J. Math. 82 pp 213– (1960) · Zbl 0099.25601 · doi:10.2307/2372732
[12] Cowling, The Fourier-Stieltjes algebra of a semi-simple group, Colloq. Math. 41 pp 89– (1979) · Zbl 0425.43012
[13] Dikranjan, Topological groups: characters, dualities, and minimal group topologies (1990) · Zbl 0687.22001
[14] Dixmier, C*-algebras (1977)
[15] Effros, On approximation properties for operator spaces, International J. Math. 1 pp 163– (1990) · Zbl 0747.46014 · doi:10.1142/S0129167X90000113
[16] Effros, Operator spaces (2000)
[17] Eymard, Lalgèbre de Fourier dun groupe localement compact, Bull. Soc. Math. France 92 pp 181– (1964) · Zbl 0169.46403 · doi:10.24033/bsmf.1607
[18] Figà-Talamanca, Positive definite functions which vanish at infinity, Pacific. J. Math. 69 pp 355– (1977) · Zbl 0309.43015 · doi:10.2140/pjm.1977.69.355
[19] Gelfand, Unitary representations of the group of linear transformations of the straight line, C. R. (Doklady) Acad. Sci. URSS (N.S.) 55 pp 567– (1947) · Zbl 0029.00503
[20] Greene, Projective limits in harmonic analysis, Trans. Amer. Math. Soc. 209 pp 119– (1975) · Zbl 0285.43003 · doi:10.1090/S0002-9947-1975-0376952-5
[21] Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 pp 91– (1973) · Zbl 0257.43007 · doi:10.5802/aif.473
[22] Hewitt, Abstract harmonic analysis I (1979) · Zbl 0089.10806
[23] Host, La théorème des idempotents dans B(G), Bull. Soc. Math. France 114 pp 215– (1986) · Zbl 0606.43002 · doi:10.24033/bsmf.2055
[24] Husain, Introduction to topological groups (1966) · Zbl 0136.29402
[25] Ilie, Completely bounded homomorphisms of the Fourier algebras, J. Funct. Anal. 225 pp 480– (2005) · Zbl 1077.43004 · doi:10.1016/j.jfa.2004.11.011
[26] Inoue, Some closed subalgebras of measure algebras and a generalization of P. J. Cohen’s theorem, J. Math. Soc. Japan 23 pp 278– (1971) · Zbl 0212.15001 · doi:10.2969/jmsj/02320278
[27] Inoue, On the range of a homomorphism of a group algebra into a measure algebra, Proc. Amer. Math. Soc. 43 pp 94– (1974) · Zbl 0292.43004 · doi:10.1090/S0002-9939-1974-0330926-3
[28] Kelley, General topology (1955)
[29] Khalil, Sur lanalyse harmonique du groupe affine de la droite, Studia Math. 51 pp 139– (1974)
[30] Mauceri, Square integrable representations and the Fourier algebra of a unimodular group, Pacific J. Math. 73 pp 143– (1977) · Zbl 0396.43017 · doi:10.2140/pjm.1977.73.143
[31] Montgomery, Topological transformation groups (1966) · Zbl 0073.25802
[32] Patterson, Groupoids, inverse semigroups, and their operator algebras (1999) · doi:10.1007/978-1-4612-1774-9
[33] Ramakrishnan, Fourier analysis on number fields (1999) · Zbl 0916.11058 · doi:10.1007/978-1-4757-3085-2
[34] Rickert, Locally compact topologies for groups, Trans. Amer. Math. Soc. 2 pp 225– (1967) · Zbl 0189.32404 · doi:10.1090/S0002-9947-1967-0202911-4
[35] Roelcke, Uniform structures on topological groups and their quotients (1981) · Zbl 0489.22001
[36] Ruan, Subspaces of C*-algebras, J. Funct. Anal. 76 pp 217– (1988) · Zbl 0646.46055 · doi:10.1016/0022-1236(88)90057-2
[37] Rudin, Fourier analysis on groups (1962) · Zbl 0107.09603
[38] Runde, Lectures on amenability (2002) · Zbl 0999.46022 · doi:10.1007/b82937
[39] Takesaki, Duality and subgroups, II, J. Funct. Anal. 11 pp 184– (1972) · Zbl 0245.46090 · doi:10.1016/0022-1236(72)90087-0
[40] J. L. Taylor Measure algebras 1973 Providence, RI American Mathematical Society
[41] Walter, On the structure of the Fourier-Stieltjes algebra, Pacific J. Math. 58 pp 267– (1975) · Zbl 0275.43006 · doi:10.2140/pjm.1975.58.267
[42] Walter, On a theorem of Figà-Talamanca, Proc. Amer. Math. Soc. 60 pp 72– (1976)
[43] Warner, Foundations of differentiable manifolds and Lie groups (1983) · Zbl 0516.58001 · doi:10.1007/978-1-4757-1799-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.