×

The computation of factorization invariants for affine semigroups. (English) Zbl 1457.20045

Summary: We present several new algorithms for computing factorization invariant values over affine semigroups. In particular, we give (i) the first known algorithm to compute the delta set of any affine semigroup, (ii) an improved method of computing the tame degree of an affine semigroup, and (iii) a dynamic algorithm to compute catenary degrees of affine semigroup elements. Our algorithms rely on theoretical results from combinatorial commutative algebra involving Gröbner bases, Hilbert bases, and other standard techniques. Implementation in the computer algebra system GAP is discussed.

MSC:

20M13 Arithmetic theory of semigroups
20M14 Commutative semigroups
05A17 Combinatorial aspects of partitions of integers
13F65 Commutative rings defined by binomial ideals, toric rings, etc.
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)

References:

[1] The 4ti2 team, 4ti2-a software package for algebraic, geometric and combinatorial problems on linear spaces, http://www.4ti2.de.
[2] P. A. García-Sánchez and A. Sánchez-R.-Navarro, 4ti2gap, GAP wrapper for 4ti2, https://github.com/gap-packages/4ti2gap.
[3] Barron, T., O’Neill, C. and Pelayo, R., On dynamic algorithms for factorization invariants in numerical monoids, Math. Comput.86 (2017) 2429-2447. · Zbl 1385.20019
[4] Blanco, V., García-Sánchez, P. A. and Geroldinger, A., Semigroup theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math.55 (2011) 1385-1414. · Zbl 1279.20072
[5] W. Bruns, B. Ichim, T. Römer and C. Söger, Normaliz, Algorithms for rational cones and affine monoids, http://www.math.uos.de/normaliz. · Zbl 1203.13033
[6] Bruns, W., Ichim, B. and Söger, C., The power of pyramid decompositions in Normaliz, J. Symb. Comput.74 (2016) 513-536. · Zbl 1332.68298
[7] Chapman, S. T., García-Sánchez, P. A. and Llena, D., The catenary and tame degree of numerical monoids, Forum Math.21 (2009) 117-129. · Zbl 1177.20070
[8] Chapman, S., García-Sánchez, P., Llena, D., Malyshev, A. and Steinberg, D., On the delta set and the Betti elements of a BF-monoid, Arab J. Math.1 (2012) 53-61. · Zbl 1277.20071
[9] Chapman, S., García-Sánchez, P., Llena, D., Ponomarenko, V. and Rosales, J., The catenary and tame degree in finitely generated commutative cancellative monoids, Manuscr. Math.120 (2006) 253-264. · Zbl 1117.20045
[10] Chapman, S., Corrales, M., Miller, A., Miller, C. and Patel, D., The catenary and tame degrees on a numerical monoid are eventually periodic, J. Aust. Math. Soc.97(3) (2014) 289-300. · Zbl 1310.20052
[11] M. Costantini and W. de Graaf, singular, The GAP interface to Singular, Version 12.04.28 (2012), (GAP package), http://www.gap-system.org/HostedGap-Packages/singular/.
[12] Cox, D., Little, J. and O’Shea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, , 4th edn. (Springer, Cham, 2015). · Zbl 1335.13001
[13] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2016).
[14] M. Delgado, P. A. García-Sánchez and J. Morais, NumericalSgps, a package for numerical semigroups, Version 1.0.1 (2015), (Refereed GAP package), http://www.gap-system.org. · Zbl 1365.68487
[15] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T. Koch, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, S. Vigerske, D. Weninger, M. Winkler, J. T. Witt and J. Witzig, The SCIP Optimization Suite 3.2, ZIB-Report (2016) 15-60.
[16] Gao, W., Geroldinger, A. and Schmid, W. A., Local and global tameness in Krull monoids, Commun. Algebra43 (2015) 262-296. · Zbl 1320.20057
[17] The GAP Group, GAP — Groups, Algorithms, and Programming, 2014, http://www.gap-system.org.
[18] García-Sánchez, P., Llena, D. and Moscariello, A., Delta sets for nonsymmetric numerical semigroups with embedding dimension three, Forum Math.30(1) (2018) 15-30. · Zbl 1458.20048
[19] García-García, J. I., Moreno-Frías, M. A. and Vigneron-Tenorio, A., Computation of the \(\omega \)-primality and asymptotic \(\omega \)-primality, applications to numerical semigroups, Israel J. Math.206 (2015) 395-411. · Zbl 1337.20067
[20] García-Sánchez, P. A., An overview of the computational aspects of nonunique factorization invariants, in Multiplicative Ideal Theory and Factorization Theory: Commutative and Non-commutative Perspectives (Springer Proceedings in Mathematics and Statistics), Vol. 170, Springer. · Zbl 1394.20034
[21] García-Sánchez, P. A., Ojeda, I. and Sánchez-R.-Navarro, A., Factorization invariants in half-factorial affine semigroups, Internat. J. Algebra Comput.23 (2013) 111-122. · Zbl 1272.20060
[22] Geroldinger, A. and Halter-Koch, F., Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory (Chapman and Hall/CRC, Boca Raton, Florida, 2006). · Zbl 1113.11002
[23] S. Gutsche, M. Horn and C. Söger, NormalizInterface, GAP wrapper for Normaliz, Version 0.9.5 (2016), (GAP package), https://gap-packages.github.io/NormalizInterface.
[24] Herzog, J., Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math.3 (1970) 175-193. · Zbl 0211.33801
[25] Kainrath, F. and Lettl, G., Geometric notes on monoids, Semigroup Forum61 (2000) 298-302. · Zbl 0964.20037
[26] Kruskal, J. B., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc.7 (1956) 48-50. · Zbl 0070.18404
[27] O’Neill, C., On factorization invariants and Hilbert functions, J. Pure Appl. Algebra221(12) (2017) 3069-3088. · Zbl 1406.20063
[28] C. O’Neill and R. Pelayo, Factorization invariants in numerical monoids, Algebraic and Geometric Methods in Discrete Mathematics, pp. 231-249, Contemp. Math., p. 685, Amer. Math. Soc., Providence, RI, 2017. Available at arXiv:math.AC/1508.00128. · Zbl 1360.05130
[29] Rédei, L., The Theory of Finitely Generated Commutative Semigroups (Pergamon, Oxford-Edinburgh-New York, 1965). · Zbl 0133.27904
[30] Rosales, J. C. and García-Sánchez, P. A., Finitely Generated Commutative Monoids (Nova Science Publishers, 1999). · Zbl 0966.20028
[31] Rosales, J. and García-Sánchez, P., Numerical semigroups, in Developments in Mathematics, Vol. 20 (Springer-Verlag, New York, 2009). · Zbl 1220.20047
[32] Rosales, J. C., García-Sánchez, P. A. and García-García, J. I., Irreducible ideals of finitely generated commutative monoids, J. Algebra238 (2001) 328-344. · Zbl 1001.20050
[33] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.2), 2016, http://www.sagemath.org.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.