×

On a wider class of prior distributions for graphical models. (English) Zbl 07808668

Summary: Gaussian graphical models are useful tools for conditional independence structure inference of multivariate random variables. Unfortunately, Bayesian inference of latent graph structures is challenging due to exponential growth of \(\mathcal{G}_n\), the set of all graphs in \(n\) vertices. One approach that has been proposed to tackle this problem is to limit search to subsets of \(\mathcal{G}_n\). In this paper we study subsets that are vector subspaces with the cycle space \(\mathcal{C}_n\) as the main example. We propose a novel prior on \(\mathcal{C}_n\) based on linear combinations of cycle basis elements and present its theoretical properties. Using this prior, we implement a Markov chain Monte Carlo algorithm, and show that (i) posterior edge inclusion estimates computed with our technique are comparable to estimates from the standard technique despite searching a smaller graph space, and (ii) the vector space perspective enables straightforward implementation of MCMC algorithms.

MSC:

62H22 Probabilistic graphical models
05C80 Random graphs (graph-theoretic aspects)
05C90 Applications of graph theory

Software:

gRbase; BDgraph; HdBCS

References:

[1] Aldous, D. J. (1990). The random walk construction of uniform spanning trees and uniform labelled trees. SIAM J. Discrete Math.3, 450-465. · Zbl 0717.05028
[2] Armstrong, H., Carter, C. K., Wong, K. F. K. and Kohn, R. (2009). Bayesian covariance matrix estimation using a mixture of decomposable graphical models. Statist. Comput.19, 303-316.
[3] Atay-Kayis, A. and Massam, H. (2005). A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models. Biometrika92, 317-335. · Zbl 1094.62028
[4] Axler, S. (2015). Linear Algebra Done Right, 3rd edn (Undergraduate Texts in Mathematics). Springer, Cham and Heidelberg. · Zbl 1304.15001
[5] Bender, E., Richmond, L. and Wormald, N. (1985). Almost all chordal graphs split. J. Austral. Math. Soc.38, 214-221. · Zbl 0571.05026
[6] Cayley, A. (1889). A theorem on trees. Quart. J. Pure Appl. Math.23, 376-378. · JFM 21.0687.01
[7] Chaiken, S. and Kleitman, D. J. (1978). Matrix tree theorems. J. Combinatorial Theory A24, 377-381. · Zbl 0376.05032
[8] Chung, F. R. and Mumford, D. (1994). Chordal completions of planar graphs. J. Combinatorial Theory B62, 96-106. · Zbl 0809.05038
[9] Dawid, A. P. and Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models. Ann. Statist.21, 1272-1317. · Zbl 0815.62038
[10] Dempster, A. P. (1972). Covariance selection. Biometrics28, 157-175.
[11] Dethlefsen, C. and Højsgaard, S. (2005). A common platform for graphical models in R: the gRbase package. J. Statist. Softw.14, 1-12.
[12] Dobra, A. and Lenkoski, A. (2011). Copula Gaussian graphical models and their application to modeling functional disability data. Ann. Appl. Statist.5, 969-993. · Zbl 1232.62046
[13] Duan, L. L. and Dunson, D. B. (2021). Bayesian spanning tree: estimating the backbone of the dependence graph. Available at arXiv:2106.16120v1.
[14] Giudici, P. (1996). Learning in graphical Gaussian models. In BayesianStatistics5, ed. J. M. Bernardo et al., pp. 621-628. Oxford University Press.
[15] Giudici, P. and Green, P. J. (1999). Decomposable graphical Gaussian model determination. Biometrika86, 785-801. · Zbl 0940.62019
[16] Green, P. J. and Thomas, A. (2013). Sampling decomposable graphs using a Markov chain on junction trees. Biometrika100, 91-110. · Zbl 1284.62172
[17] Højsgaard, S., Edwards, D. and Lauritzen, S. (2012). Graphical Models with R. Springer, New York. · Zbl 1286.62005
[18] Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C. and West, M. (2005). Experiments in stochastic computation for high-dimensional graphical models. Statist. Sci.20, 388-400. · Zbl 1130.62408
[19] Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc. 7, 48-50. · Zbl 0070.18404
[20] Lauritzen, S. L. (1996). Graphical Models (Oxford Statistical Science Series). The Clarendon Press, Oxford University Press, New York. · Zbl 0907.62001
[21] Lenkoski, A. and Dobra, A. (2011). Computational aspects related to inference in Gaussian graphical models with the G-Wishart prior. J. Comput. Graph. Statist.20, 140-157.
[22] Lu, D., De Iorio, M., Jasra, A. and Rosner, G. L. (2020). Bayesian inference for latent chain graphs. Found. Data Sci.2, 35-54.
[23] Miller, L. D., Smeds, J., George, J., Vega, V. B., Vergara, L., Ploner, A., Pawitan, Y., Hall, P., Klaar, S., Liu, E. T. and Bergh, J. (2005). An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Nat. Acad. Sci. USA102, 13550-13555.
[24] Mohammadi, R. and Wit, E. C. (2019). BDgraph: an R package for Bayesian structure learning in graphical models. J. Statist. Softw.89, 1-30.
[25] Murray, I., Ghahramani, Z. and Mackay, D. J. C. (2006). MCMC for doubly-intractable distributions. In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI’06), pp. 359-366. AUAI Press, Arlington, VA.
[26] Niu, Y., Pati, D. and Mallick, B. K. (2021). Bayesian graph selection consistency under model misspecification. Bernoulli27, 637-672. · Zbl 1476.62121
[27] Peterson, C., Stingo, F. C. and Vannucci, M. (2015). Bayesian inference of multiple Gaussian graphical models. J. Amer. Statist. Assoc.110, 159-174. · Zbl 1373.62106
[28] Roverato, A. (2002). Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scand. J. Statist.29, 391-411. · Zbl 1036.62027
[29] Schild, A.. (2018). An almost-linear time algorithm for uniform random spanning tree generation. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pp. 214-227. · Zbl 1428.68391
[30] Schwaller, L., Robin, S. and Stumpf, M. (2019). Closed-form Bayesian inference of graphical model structures by averaging over trees. J. Soc. Française Statist.160, 1-23. · Zbl 1432.62059
[31] Scott, J. G. and Carvalho, C. M. (2008). Feature-inclusion stochastic search for Gaussian graphical models. J. Comput. Graph. Statist.17, 790-808.
[32] Sonntag, D. and Peña, J. M. (2015). Chain graphs and gene networks. In Foundations of Biomedical Knowledge Representation (Lecture Notes Comput. Sci. 9521), ed. A. Hommersom and P. Lucas, pp. 159-178. Springer, Cham.
[33] Stingo, F. and Marchetti, G. M. (2015). Efficient local updates for undirected graphical models. Statist. Comput.25, 159-171. · Zbl 1331.62166
[34] Tan, L. S., Jasra, A., De Iorio, M. and Ebbels, T. M. (2017). Bayesian inference for multiple Gaussian graphical models with application to metabolic association networks. Ann. Appl. Statist.11, 2222-2251. · Zbl 1383.62294
[35] Uhler, C., Lenkoski, A. and Richards, D. (2018). Exact formulas for the normalizing constants of Wishart distributions for graphical models. Ann. Statist.46, 90-118. · Zbl 1392.62146
[36] Van Den Boom, W., Jasra, A., De Iorio, M., Beskos, A. and Eriksson, J. G. (2022). Unbiased approximation of posteriors via coupled particle Markov chain Monte Carlo. Statist. Comput.32, 36. · Zbl 1486.62010
[37] Veblen, O. (1912). An application of modular equations in analysis situs. Ann. of Math.14, 86-94. · JFM 43.0574.01
[38] Wallis, W. D. (2010). A Beginner’s Guide to Graph Theory. Springer, New York.
[39] Wang, H. and Carvalho, C. M. (2010). Simulation of hyper-inverse Wishart distributions for non-decomposable graphs. Electron. J. Statist.4, 1470-1475. · Zbl 1329.60008
[40] Wang, H. and Li, S. Z. (2012). Efficient Gaussian graphical model determination under G-Wishart prior distributions. Electron. J. Statist.6, 168-198. · Zbl 1335.62069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.