×

Degree-constrained \(k\)-minimum spanning tree problem. (English) Zbl 1454.90102

Summary: Let \(G(V,E)\) be a simple undirected complete graph with vertex and edge sets \(V\) and \(E\), respectively. In this paper, we consider the degree-constrained \(k\)-minimum spanning tree (DC \(k\) MST) problem which consists of finding a minimum cost subtree of \(G\) formed with at least \(k\) vertices of \(V\) where the degree of each vertex is less than or equal to an integer value \(d\leq k-2\). In particular, in this paper, we consider degree values of \(d\in\{ 2,3\}\). Notice that DC \(k\) MST generalizes both the classical degree-constrained and \(k\)-minimum spanning tree problems simultaneously. In particular, when \(d=2\), it reduces to a \(k\)-Hamiltonian path problem. Application domains where DC \(k\) MST can be adapted or directly utilized include backbone network structures in telecommunications, facility location, and transportation networks, to name a few. It is easy to see from the literature that the DC \(k\) MST problem has not been studied in depth so far. Thus, our main contributions in this paper can be highlighted as follows. We propose three mixed-integer linear programming (MILP) models for the DC \(k\) MST problem and derive for each one an equivalent counterpart by using the handshaking lemma. Then, we further propose ant colony optimization (ACO) and variable neighborhood search (VNS) algorithms. Each proposed ACO and VNS method is also compared with another variant of it which is obtained while embedding a Q-learning strategy. We also propose a pure Q-learning algorithm that is competitive with the ACO ones. Finally, we conduct substantial numerical experiments using benchmark input graph instances from TSPLIB and randomly generated ones with uniform and Euclidean distance costs with up to 400 nodes. Our numerical results indicate that the proposed models and algorithms allow obtaining optimal and near-optimal solutions, respectively. Moreover, we report better solutions than CPLEX for the large-size instances. Ultimately, the empirical evidence shows that the proposed Q-learning strategies can bring considerable improvements.

MSC:

90C35 Programming involving graphs or networks
90C27 Combinatorial optimization
90C59 Approximation methods and heuristics in mathematical programming
05C05 Trees
05C85 Graph algorithms (graph-theoretic aspects)

Software:

CPLEX; GitHub

References:

[1] Adasme, P., Optimal sub-tree scheduling for wireless sensor networks with partial coverage, Computer Standards & Interfaces, 61, 20-35 (2019) · doi:10.1016/j.csi.2018.04.002
[2] Adasme, P., p-median based formulations with backbone facility locations, Applied Soft Computing, 67, 261-275 (2018) · doi:10.1016/j.asoc.2018.03.008
[3] Adasme, P.; Andrade, R.; Leung, J.; Lisser, A., Improved solution strategies for dominating trees, Expert Systems with Applications, 100, 30-40 (2018) · doi:10.1016/j.eswa.2018.01.031
[4] Adasme, P.; Dehghan Firoozabadi, A., Facility location with tree topology and radial distance constraints, Complexity, 2019 (2019) · Zbl 1432.90074 · doi:10.1155/2019/9723718
[5] Ahlgren, B.; Hidell, M.; Ngai, E. C.-H., Internet of things for smart cities: interoperability and open data, IEEE Internet Computing, 20, 6, 52-56 (2016) · doi:10.1109/mic.2016.124
[6] Al-Zaidi, R.; Woods, J. C.; Al-Khalidi, M.; Hu, H., Building novel VHF-based wireless sensor networks for the internet of marine things, IEEE Sensors Journal, 18, 5, 2131-2144 (2018) · doi:10.1109/jsen.2018.2791487
[7] Chu, Z.; Zhou, F.; Zhu, Z.; Hu, R. Q.; Xiao, P., Wireless powered sensor networks for internet of things: maximum throughput and optimal power allocation, IEEE Internet of Things Journal, 5, 1, 310-321 (2018) · doi:10.1109/jiot.2017.2782367
[8] Dial, R. B., An efficient algorithm for building min-path trees for all origins in a multi-class network, Transportation Research Part B: Methodological, 40, 10, 851-856 (2006) · doi:10.1016/j.trb.2005.12.002
[9] Hua, H.; Hovestadt, L.; Tang, P.; Li, B., Integer programming for urban design, European Journal of Operational Research, 274, 3, 1125-1137 (2019) · Zbl 1430.90580 · doi:10.1016/j.ejor.2018.10.055
[10] Khan, I.; Belqasmi, F.; Glitho, R.; Crespi, N.; Morrow, M.; Polakos, P., Wireless sensor network virtualization: a survey, IEEE Communications Surveys & Tutorials, 18, 1, 553-576 (2016) · doi:10.1109/comst.2015.2412971
[11] Bulut, E.; Korpeoglu, I., Sleep scheduling with expected common coverage in wireless sensor networks, Wireless Networks, 17, 1, 19-40 (2011) · doi:10.1007/s11276-010-0262-2
[12] Yardibi, T.; Karasan, E., A distributed activity scheduling algorithm for wireless sensor networks with partial coverage, Wireless Networks, 16, 1, 213-225 (2010) · doi:10.1007/s11276-008-0125-2
[13] Adasme, P.; Andrade, R.; Lisser, A., Minimum cost dominating tree sensor networks under probabilistic constraints, Computer Networks, 112, 208-222 (2017) · doi:10.1016/j.comnet.2016.11.011
[14] Cardei, M.; MacCallum, D.; Cheng, X., Wireless sensor networks with energy efficient organization, Journal of Interconnection Networks, 3, 3-4 (2002)
[15] Gupta, H.; Zhou, Z.; Das, S. R.; Gu, Q., Connected sensor cover: self-organization of sensor networks for efficient query execution, IEEE/ACM Transactions on Networking, 14, 1, 55-67 (2006) · doi:10.1109/tnet.2005.863478
[16] Wang, L.; Xiao, Y., A survey of energy-efficient scheduling mechanisms in sensor networks, Mobile Networks and Applications, 11, 5, 723-740 (2006) · doi:10.1007/s11036-006-7798-5
[17] Thenepalle, J.; Singamsetty, P., The degree constrained k-cardinality minimum spanning tree problem: a lexisearch algorithm, Decision Science Letters, 7, 301-310 (2018)
[18] Garey, M.; Johnson, D., Computers and Intractability: A Guide to the Theory of NP-Completeness (1979), New York, NY, USA: W. H. Freeman, New York, NY, USA · Zbl 0411.68039
[19] Lozovanu, D.; Zelikovsky, A., Minimal and bounded tree problems, Tezele Congresului XVIII Al Academiei Romano-Americane (1996), Chișinău, Moldova: Kishniev, Chișinău, Moldova
[20] Ravi, R.; Sundaram, R.; Marathe, M. V.; Rosenkrantz, D. J.; Ravi, S. S., Spanning trees-short or small, SIAM Journal on Discrete Mathematics, 9, 2, 178-200 (1996) · Zbl 0855.05058 · doi:10.1137/s0895480194266331
[21] Adasme, P.; Soto, I.; Seguel, F.; Younas, M.; Awan, I.; Ghinea, G.; Catalan Cid, M., Finding degree constrained k-cardinality minimum spanning trees for wireless sensor networks, Mobile Web and Intelligent Information Systems, 10995, 51-62 (2018), Springer, Cham, Switzerland: Lecture Notes in Computer Science, Springer, Cham, Switzerland · doi:10.1007/978-3-319-97163-6_5
[22] Caccetta, L.; Hill, S. P., A branch and cut method for the degree-constrained minimum spanning tree problem, Networks, 37, 2, 74-83 (2001) · Zbl 0967.90094 · doi:10.1002/1097-0037(200103)37:2<74::aid-net2>3.0.co;2-e
[23] Euler, L., Solutio problematis ad geometriam situs pertinentis, Commentarii Academiae Scientiarum Imperialis Petropolitanae, 8, 128-140 (1976)
[24] Adasme, P.; Andrade, R.; Letournel, M.; Lisser, A., Stochastic maximum weight forest problem, Networks, 65, 4, 289-305 (2015) · Zbl 1390.90402 · doi:10.1002/net.21610
[25] Dorigo, M.; Gambardella, L. M., A study of some properties of ant-Q, Prcoeedings of the 1996 Parallel Problem Solving from Nature—PPSN IV · doi:10.1007/3-540-61723-x_1029
[26] Dorigo, M.; Maniezzo, V.; Colorni, A., Ant system: optimization by a colony of cooperating agents, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26, 1, 29-41 (1996) · doi:10.1109/3477.484436
[27] Gambardella, L.; Dorigo, M., Ant-Q: a reinforcement learning approach to the traveling salesman problem, Proceedings of the 12th International Conference on Machine Learning
[28] Hansen, P.; Mladenović, N., Variable neighborhood search: principles and applications, European Journal of Operational Research, 130, 3, 449-467 (2001) · Zbl 0981.90063 · doi:10.1016/s0377-2217(00)00100-4
[29] Mladenovic, N.; Hansen, P., Variable neighborhood search, Computers & OR, 24, 11, 1097-1100 (1997) · Zbl 0889.90119
[30] Caccetta, L.; Wamiliana, Heuristics approach for the degree constrained minimum spanning tree, Proceedings of the 2001 International Modeling and Simulations
[31] Watkins, C., Learning with delayed rewards (1989), Cambridge, UK: Psychology Department, University of Cambridge, Cambridge, UK, Ph.D. dissertation
[32] Bengio, Y.; Lodi, A.; Prouvost, A., Machine learning for combinatorial optimization: a methodological tour d’horizon (2018), https://arxiv.org/abs/1811.06128
[33] Queiroz dos Santos, J. P.; de Melo, J. D.; Duarte Neto, A. D.; Aloise, D., Reactive search strategies using reinforcement learning, local search algorithms and variable neighborhood search, Expert Systems with Applications, 41, 10, 4939-4949 (2014) · doi:10.1016/j.eswa.2014.01.040
[34] https://github.com/pdrozdowski/TSPLib.Net/tree/master/TSPLIB95/tspTSBLIB
[35] Andrade, R.; Lucena, A.; Maculan, N., Using Lagrangian dual information to generate degree constrained spanning trees, Discrete Applied Mathematics, 154, 5, 703-717 (2006) · Zbl 1120.90067 · doi:10.1016/j.dam.2005.06.011
[36] Chlebík, M.; Chlebíková, J., The Steiner tree problem on graphs: inapproximability results, Theoretical Computer Science, 406, 3, 207-214 (2008) · Zbl 1160.68023 · doi:10.1016/j.tcs.2008.06.046
[37] Naveen, G., Saving an epsilon: a 2-approximation for the k-MST problem in graphs, Proceedings of the 37th Annual ACM Symposium on Theory of Computing · Zbl 1192.05159
[38] Katagiri, H.; Guo, Q., A hybrid-heuristics algorithm for k-minimum spanning tree problems, IAENG Transactions on Engineering Technologies, 167-180 (2013), Dordrecht, Netherlands: Springer, Dordrecht, Netherlands
[39] Katagiri, H.; Hayashida, T.; Nishizaki, I.; Guo, Q., A hybrid algorithm based on tabu search and ant colony optimization for k-minimum spanning tree problems, Expert Systems with Applications, 39, 5, 5681-5686 (2012) · doi:10.1016/j.eswa.2011.11.103
[40] Doan, M., An effective ant-based algorithm for the degree-constrained minimum spanning tree problem, Prcoeedings of the Evolutionary Computation IEEE CEC 2007
[41] Hanr, L.; Wang, Y., A novel genetic algorithm for degree-constrained minimum spanning tree problem, International Journal of Computer Science and Network Security, 6, 7A, 50-57 (2006)
[42] Krishnamoorthy, M.; Ernst, A. T.; Sharaiha, Y. M., Comparison of algorithms for the degree constrained minimum spanning tree, Journal of Heuristics, 7, 6, 587-611 (2001) · Zbl 0987.68613
[43] Narula, S. C.; Ho, C. A., Degree-constrained minimum spanning tree, Computers & Operations Research, 7, 4, 239-249 (1980) · doi:10.1016/0305-0548(80)90022-2
[44] Volgenant, A., A Lagrangean approach to the degree-constrained minimum spanning tree problem, European Journal of Operational Research, 39, 3, 325-331 (1989) · Zbl 0674.90071 · doi:10.1016/0377-2217(89)90169-0
[45] de Souza, M. C.; Martins, P., Skewed VNS enclosing second order algorithm for the degree constrained minimum spanning tree problem, European Journal of Operational Research, 191, 3, 677-690 (2008) · Zbl 1160.90499 · doi:10.1016/j.ejor.2006.12.061
[46] Chagas, R. J.; Valle, C. A.; da Cunha, A. S., Exact solution approaches for the Multi-period degree constrained minimum spanning tree problem, European Journal of Operational Research, 271, 1, 57-71 (2018) · Zbl 1403.90632 · doi:10.1016/j.ejor.2018.05.010
[47] Singh, K.; Sundar, S., A hybrid steady-state genetic algorithm for the min-degree constrained minimum spanning tree problem, European Journal of Operational Research, 276, 1, 88-105 (2019) · Zbl 1430.90553 · doi:10.1016/j.ejor.2019.01.002
[48] Wang, Q.; Psillakis, H. E.; Sun, C., Cooperative control of multiple agents with unknown high-frequency gain signs under unbalanced and switching topologies, IEEE Transactions on Automatic Control, 64, 6, 2495-2501 (2019) · Zbl 1482.93055 · doi:10.1109/tac.2018.2867161
[49] Wang, Q.; Sun, C., Adaptive consensus of multiagent systems with unknown high-frequency gain signs under directed graphs, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50, 6, 2181-2186 (2020) · doi:10.1109/tsmc.2018.2810089
[50] Kruskal, J. B., On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society, 7, 1, 48 (1956) · Zbl 0070.18404 · doi:10.1090/s0002-9939-1956-0078686-7
[51] Prim, R. C., Shortest connection networks and some generalizations, Bell System Technical Journal, 36, 6, 1389-1401 (1957) · doi:10.1002/j.1538-7305.1957.tb01515.x
[52] Desrochers, M.; Laporte, G., Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints, Operations Research Letters, 10, 1, 27-36 (1991) · Zbl 0723.90081 · doi:10.1016/0167-6377(91)90083-2
[53] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C., Introduction to Algorithms (2009), Cumberland, RI, USA: MIT Press and McGraw-Hill, Cumberland, RI, USA · Zbl 1187.68679
[54] IBM ILOG, CPLEX high-performance mathematical programming engine (2016), http://www.ibm.com/software/integration/optimization/cplex/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.