×

A resting-state brain functional network study in MDD based on minimum spanning tree analysis and the hierarchical clustering. (English) Zbl 1373.92064

Summary: A large number of studies demonstrated that major depressive disorder (MDD) is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST) analysis and the hierarchical clustering are first used for the depression disease in this study. Resting-state electroencephalogram (EEG) sources were assessed from 15 healthy and 23 major depressive subjects. Then, the coherence, MST, and the hierarchical clustering are obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients is significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicate the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lose clustering in frontal regions. Our findings suggest that there is a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

MSC:

92C50 Medical applications (general)
92C20 Neural biology
62H30 Classification and discrimination; cluster analysis (statistical aspects)

References:

[1] Santini, Z. I.; Koyanagi, A.; Tyrovolas, S.; Mason, C.; Haro, J. M., The association between social relationships and depression: a systematic review, Journal of Affective Disorders, 175, 53-65 (2015) · doi:10.1016/j.jad.2014.12.049
[2] Lopez, A. D.; Mathers, C. D.; Ezzati, M.; Jamison, D. T.; Murray, C. J., Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data, The Lancet, 367, 9524, 1747-1757 (2006) · doi:10.1016/S0140-6736(06)68770-9
[3] Brundtland, G. H., From the World Health Organization. Mental health: new understanding, new hope., Journal of the American Medical Association, 286, 19, 2391 (2001) · doi:10.1001/jama.286.19.2391
[4] Pizzagalli, D. A., Frontocingulate dysfunction in depression: toward biomarkers of treatment response, Neuropsychopharmacology, 36, 1, 183-206 (2011) · doi:10.1038/npp.2010.166
[5] Shen, T.; Li, C.; Wang, B.; Yang, W.-M.; Zhang, C.; Wu, Z.; Qiu, M.-H.; Liu, J.; Xu, Y.-F.; Peng, D.-H., Increased cognition connectivity network in major depression disorder: a FMRI study, Psychiatry Investigation, 12, 2, 227-234 (2015) · doi:10.4306/pi.2015.12.2.227
[6] Allen, J. J. B.; Reznik, S. J., Frontal EEG asymmetry as a promising marker of depression vulnerability: Summary and methodological considerations, Current Opinion in Psychology, 4, 93-97 (2015) · doi:10.1016/j.copsyc.2014.12.017
[7] Li, Y.; Cao, D.; Wei, L.; Tang, Y.; Wang, J., Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing, Clinical Neurophysiology, 126, 11, 2078-2089 (2015) · doi:10.1016/j.clinph.2014.12.026
[8] Sambataro, F.; Wolf, N. D.; Pennuto, M.; Vasic, N.; Wolf, R. C., Revisiting default mode network function in major depression: Evidence for disrupted subsystem connectivity, Psychological Medicine, 44, 10, 2041-2051 (2014) · doi:10.1017/S0033291713002596
[9] Sporns, O., The human connectome: a complex network, Annals of the New York Academy of Sciences, 1224, 1, 109-125 (2011) · doi:10.1111/j.1749-6632.2010.05888.x
[10] Güntekin, B.; Başar, E., A review of brain oscillations in perception of faces and emotional pictures, Neuropsychologia, 58, 1, 33-51 (2014) · doi:10.1016/j.neuropsychologia.2014.03.014
[11] Thatcher, R. W.; Lubar, J. F., History of the scientific standards of QEEG normative databases, Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications, 29-59 (2009)
[12] Hughes, J. R.; John, E. R., Conventional and quantitative electroencephalography in psychiatry, Journal of Neuropsychiatry and Clinical Neurosciences, 11, 2, 190-208 (1999) · doi:10.1176/jnp.11.2.190
[13] Li, Y.; Tong, S.; Liu, D.; Gai, Y.; Wang, X.; Wang, J.; Qiu, Y.; Zhu, Y., Abnormal EEG complexity in patients with schizophrenia and depression, Clinical Neurophysiology, 119, 6, 1232-1241 (2008) · doi:10.1016/j.clinph.2008.01.104
[14] Li, X.; Hu, B.; Xu, T.; Shen, J.; Ratcliffe, M., A study on EEG-based brain electrical source of mild depressed subjects, Computer Methods and Programs in Biomedicine, 120, 3, 135-141 (2015) · doi:10.1016/j.cmpb.2015.04.009
[15] Fingelkurts, A. A.; Fingelkurts, A. A., Altered structure of dynamic electroencephalogram oscillatory pattern in major depression, Biological Psychiatry, 77, 12, 1050-1060 (2015) · doi:10.1016/j.biopsych.2014.12.011
[16] Klimesch, W., Interindividual differences in oscillatory EEG activity and cognitive performance, The Cognitive Neuroscience of Individual Differences (2003), Amsterdam, Netherlands: BIS, Amsterdam, Netherlands
[17] Da Silva, F. L., The generation of electric and magnetic signals of the brain by local networks, Comprehensive Human Physiology, 509-531 (1996), Springer
[18] Jaworska, N.; Blier, P.; Fusee, W.; Knott, V., Alpha power, alpha asymmetry and anterior cingulate cortex activity in depressed males and females, Journal of Psychiatric Research, 46, 11, 1483-1491 (2012) · doi:10.1016/j.jpsychires.2012.08.003
[19] Knott, V.; Mahoney, C.; Kennedy, S.; Evans, K., EEG power, frequency, asymmetry and coherence in male depression, Psychiatry Research—Neuroimaging, 106, 2, 123-140 (2001) · doi:10.1016/S0925-4927(00)00080-9
[20] Nystrom, C.; Matousek, M.; Hallstrom, T., Relationships between EEG and clinical characteristics in major depressive disorder, Acta Psychiatrica Scandinavica, 73, 4, 390-394 (1986) · doi:10.1111/j.1600-0447.1986.tb02700.x
[21] Lee, J.-S.; Yang, B.-H.; Lee, J.-H.; Choi, J.-H.; Choi, I.-G.; Kim, S.-B., Detrended fluctuation analysis of resting EEG in depressed outpatients and healthy controls, Clinical Neurophysiology, 118, 11, 2489-2496 (2007) · doi:10.1016/j.clinph.2007.08.001
[22] Fingelkurts, A. A.; Fingelkurts, A. A.; Rytsälä, H.; Suominen, K.; Isometsä, E.; Kähkönen, S., Composition of brain oscillations in ongoing EEG during major depression disorder, Neuroscience Research, 56, 2, 133-144 (2006) · doi:10.1016/j.neures.2006.06.006
[23] Stephan, K. E.; Riera, J. J.; Deco, G.; Horwitz, B., The brain connectivity workshops: moving the frontiers of computational systems neuroscience, NeuroImage, 42, 1, 1-9 (2008) · doi:10.1016/j.neuroimage.2008.04.167
[24] Ertl, M.; Hildebrandt, M.; Ourina, K.; Leicht, G.; Mulert, C., Emotion regulation by cognitive reappraisal—the role of frontal theta oscillations, NeuroImage, 81, 412-421 (2013) · doi:10.1016/j.neuroimage.2013.05.044
[25] Murias, M.; Webb, S. J.; Greenson, J.; Dawson, G., Resting state cortical connectivity reflected in EEG coherence in individuals with autism, Biological Psychiatry, 62, 3, 270-273 (2007) · doi:10.1016/j.biopsych.2006.11.012
[26] Clarke, A. R.; Barry, R. J.; Heaven, P. C. L.; McCarthy, R.; Selikowitz, M.; Byrne, M. K., EEG coherence in adults with attention-deficit/hyperactivity disorder, International Journal of Psychophysiology, 67, 1, 35-40 (2008) · doi:10.1016/j.ijpsycho.2007.10.001
[27] Armitage, R.; Hoffmann, R. F.; Rush, A. J., Biological rhythm disturbance in depression: temporal coherence of ultradian sleep EEG rhythms, Psychological Medicine, 29, 6, 1435-1448 (1999) · doi:10.1017/S0033291799001300
[28] Duffy, F. H.; Shankardass, A.; McAnulty, G. B.; Als, H., The relationship of Asperger’s syndrome to autism: a preliminary EEG coherence study, BMC Medicine, 11, 175 (2013) · doi:10.1186/1741-7015-11-175
[29] Hsiao, F.-J.; Chen, W.-T.; Wang, Y.-J.; Yan, S.-H.; Lin, Y.-Y., Altered source-based EEG coherence of resting-state sensorimotor network in early-stage Alzheimer’s disease compared to mild cognitive impairment, Neuroscience Letters, 558, 47-52 (2014) · doi:10.1016/j.neulet.2013.10.056
[30] Stam, C. J.; Tewarie, P.; Van Dellen, E.; van Straaten, E. C. W.; Hillebrand, A.; Van Mieghem, P., The trees and the forest: characterization of complex brain networks with minimum spanning trees, International Journal of Psychophysiology, 92, 3, 129-138 (2014) · doi:10.1016/j.ijpsycho.2014.04.001
[31] Smit, D. J. A.; Stam, C. J.; Posthuma, D.; Boomsma, D. I.; De Geus, E. J. C., Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity, Human Brain Mapping, 29, 12, 1368-1378 (2008) · doi:10.1002/hbm.20468
[32] de Haan, W.; Pijnenburg, Y. A. L.; Strijers, R. L. M.; van der Made, Y.; van der Flier, W. M.; Scheltens, P.; Stam, C. J., Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory, BMC Neuroscience, 10, 101 (2009) · doi:10.1186/1471-2202-10-101
[33] Stam, C. J.; Jones, B. F.; Nolte, G.; Breakspear, M.; Scheltens, P., Small-world networks and functional connectivity in Alzheimer’s disease, Cerebral Cortex, 17, 1, 92-99 (2007) · doi:10.1093/cercor/bhj127
[34] Zhang, J.; Cheng, W.; Wang, Z.; Zhang, Z.; Lu, W.; Lu, G.; Feng, J., Pattern classification of large-scale functional brain networks: identification of informative neuroimaging markers for epilepsy, PLoS ONE, 7, 5 (2012) · doi:10.1371/journal.pone.0036733
[35] van Diessen, E.; Otte, W. M.; Braun, K. P. J.; Stam, C. J.; Jansen, F. E., Improved diagnosis in children with partial epilepsy using a multivariable prediction model based on EEG network characteristics, PLoS ONE, 8, 4 (2013) · doi:10.1371/journal.pone.0059764
[36] Kuhnert, M.-T.; Geier, C.; Elger, C. E.; Lehnertz, K., Identifying important nodes in weighted functional brain networks: a comparison of different centrality approaches, Chaos. An Interdisciplinary Journal of Nonlinear Science, 22, 2 (2012) · doi:10.1063/1.4729185
[37] Ansmann, G.; Lehnertz, K., Surrogate-assisted analysis of weighted functional brain networks, Journal of Neuroscience Methods, 208, 2, 165-172 (2012) · doi:10.1016/j.jneumeth.2012.05.008
[38] van Wijk, B. C. M.; Stam, C. J.; Daffertshofer, A., Comparing brain networks of different size and connectivity density using graph theory, PLoS ONE, 5, 10 (2010) · doi:10.1371/journal.pone.0013701
[39] Mareš, M., The saga of minimum spanning trees, Computer Science Review, 2, 3, 165-221 (2008) · Zbl 1302.68219 · doi:10.1016/j.cosrev.2008.10.002
[40] Boersma, M.; Smit, D. J.; Boomsma, D. I.; De Geus, E. J.; Delemarre-van de Waal, H. A.; Stam, C. J., Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation, Brain Connectivity, 3, 1, 50-60 (2013) · doi:10.1089/brain.2012.0106
[41] Tewarie, P.; Hillebrand, A.; Schoonheim, M. M.; van Dijk, B. W.; Geurts, J. J. G.; Barkhof, F.; Polman, C. H.; Stam, C. J., Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study, NeuroImage, 88, 308-318 (2014) · doi:10.1016/j.neuroimage.2013.10.022
[42] Çiftçi, K., Minimum spanning tree reflects the alterations of the default mode network during alzheimer’s disease, Annals of Biomedical Engineering, 39, 5, 1493-1504 (2011) · doi:10.1007/s10439-011-0258-9
[43] Yu, M.; Hillebrand, A.; Tewarie, P.; Meier, J.; van Dijk, B.; Van Mieghem, P.; Stam, C. J., Hierarchical clustering in minimum spanning trees, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25, 2, 023107 (2015) · doi:10.1063/1.4908014
[44] Meunier, D.; Lambiotte, R.; Bullmore, E. T., Modular and hierarchically modular organization of brain networks, Frontiers in Neuroscience, 4, 200 (2010) · doi:10.3389/fnins.2010.00200
[45] Sporns, O.; Betzel, R. F., Modular brain networks, Annual Review of Psychology, 67, 613-640 (2016) · doi:10.1146/annurev-psych-122414-033634
[46] De Haan, W.; Van der Flier, W. M.; Koene, T.; Smits, L. L.; Scheltens, P.; Stam, C. J., Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease, NeuroImage, 59, 4, 3085-3093 (2012) · doi:10.1016/j.neuroimage.2011.11.055
[47] Alexander-Bloch, A. F.; Gogtay, N.; Meunier, D.; Birn, R.; Clasen, L.; Lalonde, F.; Lenroot, R.; Giedd, J.; Bullmore, E. T., Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia, Frontiers in Systems Neuroscience, 4, article no. 147 (2010) · doi:10.3389/fnsys.2010.00147
[48] Kroenke, K.; Spitzer, R. L.; Williams, J. B. W., The PHQ-9: validity of a brief depression severity measure, Journal of General Internal Medicine, 16, 9, 606-613 (2001) · doi:10.1046/j.1525-1497.2001.016009606.x
[49] Kruskal, J., On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society, 7, 48-50 (1956) · Zbl 0070.18404 · doi:10.1090/S0002-9939-1956-0078686-7
[50] Chen, J.-C., Dijkstras shortest path algorithm, Journal of Formalized Mathematics, 15, 144-157 (2003)
[51] Tas, C.; Cebi, M.; Tan, O.; Hizli-Sayar, G.; Tarhan, N.; Brown, E. C., EEG power, cordance and coherence differences between unipolar and bipolar depression, Journal of Affective Disorders, 172, 184-190 (2014) · doi:10.1016/j.jad.2014.10.001
[52] Hinrikus, H., Electroencephalographic spectral asymmetry index for detection of depression, Medical & Biological Engineering & Computing, 47, 12, 1291 (2009) · doi:10.1007/s11517-009-0554-9
[53] Tucker, D. M.; Dawson, S. L., Asymmetric EEG changes as method actors generated emotions, Biological Psychology, 19, 1, 63-75 (1984) · doi:10.1016/0301-0511(84)90011-5
[54] Fingelkurts, A. A.; Fingelkurts, A. A.; Rytsälä, H.; Suominen, K.; Isometsä, E.; Kähkönen, S., Impaired functional connectivity at EEG alpha and theta frequency bands in major depression, Human Brain Mapping, 28, 3, 247-261 (2007) · doi:10.1002/hbm.20275
[55] Leuchter, A. F.; Cook, I. A.; Hunter, A. M.; Cai, C.; Horvath, S., Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression, PLoS ONE, 7, 2 (2012) · doi:10.1371/journal.pone.0032508
[56] Davidson, R. J., Anxiety and affective style: role of prefrontal cortex and amygdala, Biological Psychiatry, 51, 1, 68-80 (2002) · doi:10.1016/S0006-3223(01)01328-2
[57] Joormann, J.; Gotlib, I. H., Emotion regulation in depression: relation to cognitive inhibition, Cognition and Emotion, 24, 2, 281-298 (2010) · doi:10.1080/02699930903407948
[58] Sheline, Y. I.; Price, J. L.; Yan, Z.; Mintun, M. A., Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus, Proceedings of the National Academy of Sciences of the United States of America, 107, 24, 11020-11025 (2010) · doi:10.1073/pnas.1000446107
[59] Zhou, Y.; Yu, C.; Zheng, H.; Liu, Y.; Song, M.; Qin, W.; Li, K.; Jiang, T., Increased neural resources recruitment in the intrinsic organization in major depression, Journal of Affective Disorders, 121, 3, 220-230 (2010) · doi:10.1016/j.jad.2009.05.029
[60] Greicius, M. D.; Flores, B. H.; Menon, V., Resting-state functional connectivity in major depressionn: abnormally increased contributions from subgenual cingulate cortex and thalamus, Biological Psychiatry, 62, 5, 429-437 (2007) · doi:10.1016/j.biopsych.2006.09.020
[61] Connolly, C. G.; Wu, J.; Ho, T. C.; Hoeft, F.; Wolkowitz, O.; Eisendrath, S.; Frank, G.; Hendren, R.; Max, J. E.; Paulus, M. P.; Tapert, S. F.; Banerjee, D.; Simmons, A. N.; Yang, T. T., Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents, Biological Psychiatry, 74, 12, 898-907 (2013) · doi:10.1016/j.biopsych.2013.05.036
[62] Alalade, E.; Denny, K.; Potter, G.; Steffens, D.; Wang, L., Altered cerebellar-cerebral functional connectivity in geriatric depression, PLoS ONE, 6, 5 (2011) · doi:10.1371/journal.pone.0020035
[63] Leistedt, S. J. J.; Coumans, N.; Dumont, M.; Lanquart, J.-P.; Stam, C. J.; Linkowski, P., Altered sleep brain functional connectivity in acutely depressed patients, Human Brain Mapping, 30, 7, 2207-2219 (2009) · doi:10.1002/hbm.20662
[64] Zhang, J.; Wang, J.; Wu, Q.; Kuang, W.; Huang, X.; He, Y.; Gong, Q., Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder, Biological Psychiatry, 70, 4, 334-342 (2011) · doi:10.1016/j.biopsych.2011.05.018
[65] Alves, N. T.; Fukusima, S. S.; Aznar-Casanova, J. A., Models of brain asymmetry in emotional processing, Psychology & Neuroscience, 1, 1, 63 (2008)
[66] Sharma, V. K.; Das, S.; Mondal, S.; Goswami, U.; Gandhi, A., Effect of Sahaj Yoga on neuro-cognitive functions in patients suffering from major depression, Indian Journal of Physiology and Pharmacology, 50, 4, 375-383 (2006)
[67] Austin, M.-P.; Mitchell, P.; Goodwin, G. M., Cognitive deficits in depression: possible implications for functional neuropathology, British Journal of Psychiatry, 178, 200-206 (2001) · doi:10.1192/bjp.178.3.200
[68] Lai, T.-J.; Payne, M. E.; Byrum, C. E.; Steffens, D. C.; Krishnan, K. R. R., Reduction of orbital frontal cortex volume in geriatric depression, Biological Psychiatry, 48, 10, 971-975 (2000) · doi:10.1016/s0006-3223(00)01042-8
[69] Rajkowska, G.; Miguel-Hidalgo, J. J.; Wei, J.; Dilley, G.; Pittman, S. D.; Meltzer, H. Y.; Overholser, J. C.; Roth, B. L.; Stockmeier, C. A., Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression, Biological Psychiatry, 45, 9, 1085-1098 (1999) · doi:10.1016/S0006-3223(99)00041-4
[70] Biver, F.; Goldman, S.; Delvenne, V.; Luxen, A.; De Maertelaer, V.; Hubain, P.; Mendlewicz, J.; Lotstra, F., Frontal and parietal metabolic disturbances in unipolar depression, Biological Psychiatry, 36, 6, 381-388 (1994) · doi:10.1016/0006-3223(94)91213-0
[71] Mayberg, H. S., Frontal lobe dysfunction in secondary depression, Journal of Neuropsychiatry and Clinical Neurosciences, 6, 4, 428-442 (1994) · doi:10.1176/jnp.6.4.428
[72] Tomarkenand, J.; Keener, A. A. D., Frontal brain asymmetry and depression: a self-regulatory perspective, Cognition & Emotion, 12, 3, 387-420 (1998) · doi:10.1080/026999398379655
[73] Allen, J. J. B.; Urry, H. L.; Hitt, S. K.; Coan, J. A., The stability of resting frontal electroencephalographic asymmetry in depression, Psychophysiology, 41, 2, 269-280 (2004) · doi:10.1111/j.1469-8986.2003.00149.x
[74] Schaffer, C. E.; Davidson, R. J.; Saron, C., Frontal and parietal electroencephalogram asymmetry in depressed and nondepressed subjects, Biological Psychiatry, 18, 7, 753-762 (1983)
[75] Tomarken, A. J.; Dichter, G. S.; Garber, J.; Simien, C., Resting frontal brain activity: Linkages to maternal depression and socio-economic status among adolescents, Biological Psychology, 67, 1-2, 77-102 (2004) · doi:10.1016/j.biopsycho.2004.03.011
[76] Jesulola, E.; Sharpley, C. F.; Bitsika, V.; Agnew, L. L.; Wilson, P., Frontal alpha asymmetry as a pathway to behavioural withdrawal in depression: research findings and issues, Behavioural Brain Research, 292, 56-67 (2015) · doi:10.1016/j.bbr.2015.05.058
[77] Aftanas, L. I.; Golocheikine, S. A., Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation, Neuroscience Letters, 310, 1, 57-60 (2001) · doi:10.1016/S0304-3940(01)02094-8
[78] Li, C.-T.; Chen, L.-F.; Tu, P.-C.; Wang, S.-J.; Chen, M.-H.; Su, T.-P.; Hsieh, J.-C., Impaired prefronto-thalamic functional connectivity as a key feature of treatment-resistant depression: a combined MEG, PET and rTMS study, PLoS ONE, 8, 8 (2013) · doi:10.1371/journal.pone.0070089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.