×

Bieberbach’s conjecture, the de Branges and Weinstein functions and the Askey-Gasper inequality. (English) Zbl 1186.30001

This paper gives an excellent description of the history of the Bieberbach conjecture, covering the period from its conception in 1916 [L. Bieberbach, S.-B. Preuss. Akad. Wiss. 38, 940–955 (1916; JFM 46.0552.01)] to its final proof in 1984 [L. de Branges, Acta Math. 154, 137–152 (1985; Zbl 0573.30014)] and a subsequent proof in 1991 [L. Weinstein, Int. Math. Res. Notices 5, 61–64 (1991; Zbl 0743.30021)].
This 27 page paper (including a list of 75 references) touches upon each historically important step of the nearly 70 years between Bieberbach and de Branges and reads like a ‘hard-to-put-down detective story’. Discussing the contributions by Loewner, Nevanlinna, Littlewood, Dieudonné, Rogosinski, Paley, Robertson, Schiffer, Grunsky, Hyman, Reade, Garabedian, Schiffer, Charzyński, the story finally reaches Milin and Lebedev and their famous conjecture. Proving this conjecture, de Branges succeeded to prove both the Robertson and Bieberbach conjectures in 1984. At that time a result on special functions that ‘was on the shelf’ [R. Askey, G. Gaspar, Am. J. Math. 98, 709–737 (1976; Zbl 0355.33005)] suddenly played the role of the missing link! The final touch in the application of the Askey-Gaspar identity (representing the de Branges function as a linear combination of \({}_3F_2\) hypergeometric functions) and the Askey-Gaspar inequality (asserting that each of the \({}_3F_2\)’s was non-negative) was actually Clausen’s identity, expressing the \({}_3F_2\) as the square of a \({}_2F_1\).
Moreover, the paper covers the application of computer algebra (specifically Zeilberger’s algorithm) in automated proofs and also gives an extensive description of the proof of the Bieberbach conjecture by Leonard Weinstein in 1991 (cited above), a proof that circumvents the use of the Askey-Gaspar inequality.
The author is to be commended for this lucid description of the history and proof of one of the famous conjectures in mathematics.

MSC:

30-02 Research exposition (monographs, survey articles) pertaining to functions of a complex variable
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
30C35 General theory of conformal mappings
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
33C20 Generalized hypergeometric series, \({}_pF_q\)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33F10 Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.)
68W30 Symbolic computation and algebraic computation

Software:

gfun; Maple

References:

[1] Aharonov, D.: On Bieberbach Eilenberg functions. Bull. Amer. Math. Soc. 76, 101–104 (1970) · Zbl 0191.37604 · doi:10.1090/S0002-9904-1970-12382-5
[2] Askey, R., Gasper, G.: Positive Jacobi polynomial sums II. Amer. J. Math. 98, 709–737 (1976) · Zbl 0355.33005 · doi:10.2307/2373813
[3] Baernstein, A., Drasin, D., Duren, P., Marden, A. (eds.): The Bieberbach conjecture. Proceedings of the Symposium on the Occasion of the Proof. Mathematical surveys and monographs, vol. 21. American Mathematical Society, Providence, R. I. (1986) · Zbl 0631.30001
[4] Bieberbach, L.: Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. S.-B. Preuss. Akad. Wiss. 38, 940–955 (1916) · JFM 46.0552.01
[5] de Branges, L.: A proof of the Bieberbach conjecture. Acta Math. 154, 137–152 (1985) · Zbl 0573.30014 · doi:10.1007/BF02392821
[6] Brickman, L.: Extreme points of the set of univalent functions. Bull. Amer. Math. Soc. 76, 372–374 (1970) · Zbl 0189.08802 · doi:10.1090/S0002-9904-1970-12483-1
[7] Brickman, L., MacGregor, T. H., Wilken, D. R.: Convex hulls of some classical families of univalent functions. Trans. Amer. Math. Soc. 156, 91–107 (1971) · Zbl 0227.30013 · doi:10.1090/S0002-9947-1971-0274734-2
[8] Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64, 95–115 (1907) · JFM 38.0448.01 · doi:10.1007/BF01449883
[9] Carathéodory, C.: Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911) · JFM 42.0429.01 · doi:10.1007/BF03014795
[10] Carathéodory, C.: Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten. Math. Ann. 72, 107–144 (1912) · JFM 43.0524.01 · doi:10.1007/BF01456892
[11] Charzyński, Z., Schiffer, M.: A new proof of the Bieberbach conjecture for the fourth coefficient. Arch. Rational Mech. Anal. 5, 187–193 (1960) · Zbl 0099.05901 · doi:10.1007/BF00252902
[12] Collins, G.E., Krandick, W.: An efficient algorithm for infallible polynomial complex roots isolation. In: Wang, Paul S. (ed.) Proceedings of ISSAC’92, pp. 189–194 (1992) · Zbl 0964.68582
[13] Dieudonné, J.: Sur les fonctions univalentes. C. R. Acad. Sci. Paris 192, 1148–1150 (1931) · Zbl 0001.34401
[14] Duren. P.L.: Coefficients of univalent functions. Bull. Amer. Math. Soc. 83, 891–911 (1977) · Zbl 0372.30012 · doi:10.1090/S0002-9904-1977-14324-3
[15] Duren, P.L.: Univalent functions. Grundlehren der mathematischen Wissenschaften, vol. 259. Springer-Verlag, New York-Berlin-Heidelberg-Tokyo (1983)
[16] Ekhad, S.B., Zeilberger, D.: A high-school algebra, ”Formal calculus”, proof of the Bieberbach conjecture [after L. Weinstein]. In: Barcelo et al. (eds.) Jerusalem combinatorics ’93: an International Conference in Combinatorics, May 9–17, 1993, Jerusalem, Israel. Providence, RI: American Mathematical Society. Contemp. Math. 178, 113–115 (1994) · Zbl 0894.30013
[17] Fekete, M., Szegö, G.: Eine Bemerkung über ungerade schlichte Funktionen. J. London Math. Soc. 8, 85–89 (1933) · Zbl 0006.35302 · doi:10.1112/jlms/s1-8.2.85
[18] FilzGerald, C.H.: Quadratic inequalities and coefficient estimates for schlicht functions. Arch. Rational Mech. Anal. 46, 356–368 (1972) · Zbl 0242.30013 · doi:10.1007/BF00281102
[19] FitzGerald, C.H., Pommerenke, Ch.: The de Branges Theorem on univalent functions. Trans. Amer. Math. Soc. 290, 683–690 (1985) · Zbl 0574.30018 · doi:10.1090/S0002-9947-1985-0792819-9
[20] Friedland, S.: On a conjecture of Robertson. Arch. Rational Mech. Anal. 37, 255–261 (1970) · Zbl 0194.38502 · doi:10.1007/BF00251606
[21] Garabedian, P. R., Schiffer, M.: A proof of the Bieberbach conjecture for the fourth coefficient. J. Rational Mech. Anal. 4, 427–465 (1955) · Zbl 0065.06902
[22] Gautschi, W.: Reminiscences of my involvement in de Branges’s proof of the Bieberbach conjecture. In: Baernstein, Drasin, Duren, Marden (Eds): The Bieberbach conjecture (West Lafayette, Ind., 1985), Math. Surveys Monogr. 21, Amer. Math. Soc., Providence, RI, pp. 205–211 (1986)
[23] Gong, S.: The Bieberbach conjecture. Studies in Advanced Mathematics, vol. 12. American Mathematical Society, Providence, R.I. (1999) · Zbl 0931.30009
[24] Gronwall, T.H.: Some remarks on conformal representation. Ann. of Math. 16, 72–76 (1914–1915) · JFM 45.0672.01 · doi:10.2307/1968044
[25] Grunsky, H.: Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Math. Z. 45, 29–61 (1939) · JFM 65.0339.04 · doi:10.1007/BF01580272
[26] Hamilton, D.H.: Extremal boundary problems. Proc. London Math. Soc. (3) 56, 101–113 (1988) · Zbl 0636.30022 · doi:10.1112/plms/s3-56.1.101
[27] Hayman, W.K.: The asymptotic behaviour of p-valent functions. Proc. London Math. Soc. (3) 5, 257–284 (1955) · Zbl 0067.30104 · doi:10.1112/plms/s3-5.3.257
[28] Hayman, W.K., Hummel, J.A.: Coefficients of powers of univalent functions. Complex Variables 7, 51–70 (1986) · Zbl 0553.30012
[29] Heine, E.: Handbuch der Kugelfunctionen. Theorie und Anwendungen. Reimer, Berlin (1878)
[30] Henrici. P.: Applied and Computational Complex Analysis, vol. 3: Discrete Fourier Analysis–Cauchy Integrals–Construction of Conformal maps–Univalent Functions. John Wiley & Sons, New York (1986) · Zbl 0578.30001
[31] Horowitz, D.: A further refinement for coefficient estimates of univalent functions. Proc. Amer. Math. Soc. 71, 217–221 (1978) · Zbl 0395.30009 · doi:10.1090/S0002-9939-1978-0480979-0
[32] Hummel, J. A.: A variational method for Gelfer functions. J. Analyse Math. 30, 271–280 (1976) · Zbl 0338.30010 · doi:10.1007/BF02786718
[33] Koebe, P.: Über die Uniformisierung beliebiger analytischer Kurven. Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Kl, pp. 191–210 (1907) · JFM 38.0454.01
[34] Koebe, P.: Über die Unifomisierung der algebraischen Kurven durch automorphe Funktionen mit imaginärer Substitutionsgruppe. Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Kl, pp. 68–76 (1909) · JFM 40.0468.02
[35] Koebe, P.: Über eine neue Methode der konformen Abbildung und Uniformisierung. Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Kl, pp. 844–848 (1912)
[36] Koepf, W.: On nonvanishing univalent functions with real coefficients. Math. Z. 192, 575–579 (1986) · Zbl 0599.30030 · doi:10.1007/BF01162704
[37] Koepf, W.: Extrempunkte und Stützpunkte in Familien nichtverschwindender schlichter Funktionen. Complex Variables 8, 153–171 (1987) · Zbl 0622.30002
[38] Koepf, W.: Power series in Computer Algebra. J. Symb. Comp. 13, 581–603 (1992) · Zbl 0758.30026 · doi:10.1016/S0747-7171(10)80012-4
[39] Koepf, W.: Hypergeometric Summation. Vieweg, Braunschweig/Wiesbaden (1998) · Zbl 0909.33001
[40] Koepf, W.: Power series, Bieberbach conjecture and the de Branges and Weinstein functions. In: Sendra, J.R. (ed.) Proceedings of ISSAC 2003, pp. 169–175. Philadelphia, ACM, New York (2003). · Zbl 1072.68678
[41] Koepf, W., Schmersau, D.: On the de Branges theorem. Complex Variables 31, 213–230 (1996) · Zbl 0882.30010
[42] Laplace, P.-S.: Théorie des attractions des sphéroïdes et de la figure des planètes. Mémoires de l’Academie Royale des Sciences de Paris 113–196 (1782).
[43] Lebedev, N. A., Milin, I. M.: An inequality. Vestnik Leningrad Univ. 20, 157–158 (1965) (Russian)
[44] Leeman, G. B.: The seventh coefficient of odd symmetric univalent functions. Duke Math. J. 43, 301–307 (1976) · Zbl 0336.30004 · doi:10.1215/S0012-7094-76-04327-1
[45] Legendre, A.-M.: Suite des recherches sur la figure des planètes. Mémoires de l’Academie Royale des Sciences de Paris, pp. 372–454 (1789).
[46] Leung, Y.: Successive coefficients of starlike functions. Bull. London Math. Soc. 10, 193–196 (1978) · Zbl 0422.30010 · doi:10.1112/blms/10.2.193
[47] Leung, Y.: Robertson’s conjecture on the coefficients of close-to-convex functions. Proc. Amer. Math. Soc. 76, 89–94 (1979) · Zbl 0415.30008
[48] Littlewood, J.E.: On inequalities in the theory of functions. Proc. London Math. Soc. (2) 23, 481–519 (1925) · JFM 51.0247.03 · doi:10.1112/plms/s2-23.1.481
[49] Littlewood, J.E. and Paley, R.E.A.C.: A proof that an odd schlicht function has bounded coefficients. J. London Math. Soc. 7, 167–169 (1932) · Zbl 0005.01803 · doi:10.1112/jlms/s1-7.3.167
[50] Löwner, K.: Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises |z| < 1, die durch Funktionen mit nichtverschwindender Ableitung geliefert werden. S.-B. Verh. Sächs. Ges. Wiss. Leipzig 69, 89–106 (1917) · JFM 46.0556.02
[51] Löwner, K.: Untersuchungen über schlichte konforme Abbildungen des Einheitskreises I. Math. Ann. 89, 103–121 (1923) · JFM 49.0714.01 · doi:10.1007/BF01448091
[52] Milin, I.M.: Estimation of coefficients of univalent functions. Dokl. Akad. Nauk SSSR 160 (1965), 769–771 (Russian) = Soviet Math. Dokl. 6, 196–198 (1965) · Zbl 0158.32201
[53] Milin, I.M.: On the coefficients of univalent functions. Dokl. Akad. Nauk SSSR 176, 1015–1018 (1967) (Russian) = Soviet Math. Dokl. 8, 1255–1258 (1967) · Zbl 0176.03201
[54] Milin, I.M.: Univalent functions and orthonormal systems. Izdat. ”Nauka”, Moskau, 1971 (Russian). English Translation: Amer. Math. Soc., Providence, R.I. (1977) · Zbl 0228.30011
[55] Milin, I.M.: De Branges’ proof of the Bieberbach conjecture (Russian), Preprint (1984) · Zbl 0553.30015
[56] Nehari, Z.: On the coefficients of Bieberbach-Eilenberg functions. J. Analyse Math. 23, 297–303 (1970). · Zbl 0207.07703 · doi:10.1007/BF02795506
[57] Nehari, Z.: A proof of |a 4| 4 by Loewner’s method. In: Clunie, J., Hayman, W.K. (ed.) Proceedings of the Symposium on Complex Analysis, Canterbury, 1973. London Math. Soc. Lecture Note Series, vol. 12, pp. 107–110. Cambridge University Press (1974).
[58] Nevanlinna, R.: Über die konforme Abbildung von Sterngebieten. Översikt av Finska Vetenskaps-Soc. Förh. 63(A), Nr. 6, 1–21 (1920–1921)
[59] Ozawa, M.: On the Bieberbach conjecture for the sixth coefficient. Kōdai Math. Sem. Rep. 21, 97–128 (1969) · Zbl 0184.10502 · doi:10.2996/kmj/1138845834
[60] Ozawa, M.: An elementary proof of the Bieberbach conjecture for the sixth coefficient. Kōdai Math. Sem. Rep. 21, 129–132 (1969) · Zbl 0202.07201 · doi:10.2996/kmj/1138845875
[61] Pederson, R.N.: A proof of the Bieberbach conjecture for the sixth coefficient. Arch. Rational. Mech. Anal. 31, 331–351 (1968) · Zbl 0184.10501 · doi:10.1007/BF00251415
[62] Pederson, R.N., Schiffer, M.: A proof of the Bieberbach conjecture for the fifth coefficient. Arch. Rational. Mech. Anal. 45, 161–193 (1972) · Zbl 0241.30025 · doi:10.1007/BF00281531
[63] Pommerenke, Ch.: Univalent functions. Vandenhoeck und Ruprecht. Göttingen-Zürich (1975)
[64] Pommerenke, Ch.: The Bieberbach Conjecture. Mathematical Intelligencer 7(2), 23–25 (1985) · Zbl 0588.30001 · doi:10.1007/BF03024170
[65] Reade, M.O.: On close-to-convex univalent functions. Mich. Math. J. 3, 59–62 (1955) · Zbl 0070.07302 · doi:10.1307/mmj/1031710535
[66] Robertson, M.S.: On the theory of univalent functions. Ann. of Math. 37, 374–408 (1936) · Zbl 0014.16505 · doi:10.2307/1968451
[67] Rogosinski, W.: Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen. Math. Z. 35, 93–121 (1932) · Zbl 0003.39303 · doi:10.1007/BF01186552
[68] Salvy, B., Zimmermann, P.: GFUN: A Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software 20, 163–177 (1994) · Zbl 0888.65010 · doi:10.1145/178365.178368
[69] Schiffer, M.: A method of variation within the family of simple functions. Proc. London Math. Soc. 44, 432–449 (1938) · Zbl 0019.22201 · doi:10.1112/plms/s2-44.6.432
[70] Study, E.: Vorlesungen über ausgewählte Gegenstände der Geometrie, 2. Heft: Konforme Abbildung einfach-zusammenhängender Bereiche. Teubner-Verlag, Leipzig-Berlin (1913) · JFM 44.0755.08
[71] Todorov, P.G.: A simple proof of the Bieberbach conjecture. Bull. Cl. Sci., VI. Sér, Acad. R. Belg. (3) 12, 335–356 (1992) · Zbl 0806.30017
[72] Weinstein, L.: The Bieberbach conjecture. Internat. Math. Res. Notices 5, 61–64 (1991) · Zbl 0743.30021 · doi:10.1155/S1073792891000089
[73] Wilf, H.: A footnote on two proofs of the Bieberbach-de Branges Theorem. Bull. London Math. Soc. 26, 61–63 (1994) · Zbl 0796.30014 · doi:10.1112/blms/26.1.61
[74] Wilf, H., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and ”q”) multisum/integral identities. Invent. Math. 103, 575–634 (1992) · doi:10.1007/BF02100618
[75] Zeilberger, D.: A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 80, 207–211 (1990) · Zbl 0701.05001 · doi:10.1016/0012-365X(90)90120-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.