×

Optimal sequential testing for an inverse Gaussian process. (English) Zbl 1343.60045

Summary: We analyze the Bayesian formulation of the sequential testing of two simple hypotheses for the distributional characteristics of an inverse Gaussian process. This problem arises when we are willing to test the positive drift of an unobservable Brownian motion, for which only the first passage times over positive thresholds can be recorded. We show that the initial optimal stopping problem for the posterior probability of one of the hypotheses can be reduced to a free-boundary problem, whose unknown boundary points are characterized by the principles of the continuous or smooth fit and whose unknown value function solves a linear integro-differential equation over the continuation set. A numerical scheme, based on the collocation method for boundary value problems, is further illustrated in order to get precise approximations of the free-boundary problem solution, which seems to be very hard to derive analytically, because of the particular structure of the Lévy measure of an inverse Gaussian process.

MSC:

60G40 Stopping times; optimal stopping problems; gambling theory
62L15 Optimal stopping in statistics
62L10 Sequential statistical analysis
62C10 Bayesian problems; characterization of Bayes procedures
60J65 Brownian motion
35R35 Free boundary problems for PDEs
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1214/105051605000000377 · Zbl 1083.60034 · doi:10.1214/105051605000000377
[2] DOI: 10.1111/1467-9469.t01-1-00045 · Zbl 0934.62109 · doi:10.1111/1467-9469.t01-1-00045
[3] DOI: 10.1017/CBO9780511543234 · Zbl 1059.65122 · doi:10.1017/CBO9780511543234
[4] DOI: 10.1080/07474946.2013.803799 · Zbl 1319.62169 · doi:10.1080/07474946.2013.803799
[5] DOI: 10.1080/07474946.2013.752169 · Zbl 1261.62075 · doi:10.1080/07474946.2013.752169
[6] Buonaguidi B., Statistica Sinica 25 pp 1527– (2015)
[7] Chhikara R. S., The Inverse Gaussian Distibution, Theory, Methodology and Applications (1989)
[8] DOI: 10.1080/17442500701594490 · Zbl 1132.62061 · doi:10.1080/17442500701594490
[9] DOI: 10.1016/j.spa.2006.05.004 · Zbl 1103.62073 · doi:10.1016/j.spa.2006.05.004
[10] DOI: 10.1007/s10479-012-1217-z · Zbl 06149321 · doi:10.1007/s10479-012-1217-z
[11] DOI: 10.1016/0167-6687(93)90995-2 · Zbl 0768.62097 · doi:10.1016/0167-6687(93)90995-2
[12] DOI: 10.1007/BF02925477 · Zbl 0717.62097 · doi:10.1007/BF02925477
[13] DOI: 10.4213/rm577 · doi:10.4213/rm577
[14] DOI: 10.1080/10451120410001663753 · Zbl 1054.62087 · doi:10.1080/10451120410001663753
[15] DOI: 10.1080/17442508.2010.530349 · Zbl 1228.62098 · doi:10.1080/17442508.2010.530349
[16] DOI: 10.1016/j.insmatheco.2013.07.010 · Zbl 1304.91106 · doi:10.1016/j.insmatheco.2013.07.010
[17] DOI: 10.1016/0304-3800(84)90040-1 · doi:10.1016/0304-3800(84)90040-1
[18] Hamming R. W., Numerical Methods for Scientist and Engineers (1986) · Zbl 0952.65501
[19] Kyprianou A. E., Introductory Lectures on Fluctuations of Lévy Processes with Applications (2006) · Zbl 1104.60001
[20] DOI: 10.2307/2344321 · doi:10.2307/2344321
[21] Lanczos C., Applied Analysis (1988)
[22] DOI: 10.1137/1.9781611970852 · doi:10.1137/1.9781611970852
[23] DOI: 10.1080/15326349.2012.672143 · Zbl 1244.62008 · doi:10.1080/15326349.2012.672143
[24] DOI: 10.1016/j.jspi.2007.03.041 · Zbl 1123.60008 · doi:10.1016/j.jspi.2007.03.041
[25] DOI: 10.1080/03461238.1982.10405107 · Zbl 0493.62072 · doi:10.1080/03461238.1982.10405107
[26] DOI: 10.1214/aos/1015952000 · Zbl 1081.62546 · doi:10.1214/aos/1015952000
[27] Peskir G., Optimal Stopping and Free-Boundary Problems (2006) · Zbl 1115.60001
[28] Sato K. I., Lévy Processes and Infinitely Divisible Distributions (1999) · Zbl 0973.60001
[29] DOI: 10.1007/978-1-4612-1456-4 · doi:10.1007/978-1-4612-1456-4
[30] DOI: 10.1007/BF01078755 · doi:10.1007/BF01078755
[31] Shiryaev A. N., Optimal Stopping Rules (1978) · Zbl 0391.60002
[32] DOI: 10.1524/stnd.2011.1109 · Zbl 1228.62101 · doi:10.1524/stnd.2011.1109
[33] DOI: 10.1214/aoms/1177731088 · Zbl 0060.30403 · doi:10.1214/aoms/1177731088
[34] DOI: 10.1214/aoms/1177730389 · Zbl 0032.04202 · doi:10.1214/aoms/1177730389
[35] DOI: 10.1214/aoms/1177731235 · Zbl 0063.08122 · doi:10.1214/aoms/1177731235
[36] DOI: 10.1214/aoms/1177731118 · Zbl 0060.30207 · doi:10.1214/aoms/1177731118
[37] DOI: 10.1198/TECH.2009.08197 · doi:10.1198/TECH.2009.08197
[38] DOI: 10.2307/2982553 · doi:10.2307/2982553
[39] DOI: 10.1007/BF02476771 · doi:10.1007/BF02476771
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.