×

New chaotic planar attractors from smooth zero entropy interval maps. (English) Zbl 1422.37019

Summary: We show that for every positive integer \(k\) there exists an interval map \(f:I\to I\) such that (1) \(f\) is Li-Yorke chaotic, (2) the inverse limit space \(I_{f}=\lim_{\leftarrow}\{f,I\}\) does not contain an indecomposable subcontinuum, (3) \(f\) is \(C^{k}\)-smooth, and (4) \(f\) is not \(C^{k+1}\)-smooth. We also show that there exists a \(C^{\infty}\)-smooth \(f\) that satisfies (1) and (2). This answers a recent question of the first author and P. Oprocha from [Proc. Am. Math. Soc. 143, No. 8, 3659–3670 (2015; Zbl 1320.54021)], where the result was proved for \(k=0\). Our study builds on the work of Misiurewicz and Smítal of a family of zero entropy weakly unimodal maps. With the help of a result of Bennett, as well as Blokh’s spectral decomposition theorem, we are also able to show that each \(I_{f}\) contains, for every integer \(i\), a subcontinuum \(C_{i}\) with the following two properties: (i) \(C_{i}\) is \(2^{i}\)-periodic under the shift homeomorphism, and (ii) \(C_{i}\) is a compactification of a topological ray. Finally, we prove that the chaotic attractors we construct are topologically distinct from the one presented by P. Oprocha and the first author.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Citations:

Zbl 1320.54021

References:

[1] Bell, H: A fixed point theorem for plane homeomorphism. Fundam. Math. 100, 119-128 (1978) · Zbl 0392.54025
[2] Cartwright, ML, Littlewood, JE: Some fixed point theorems. With appendix by HD Ursell. Ann. Math. (2) 54, 1-37 (1951) · Zbl 0054.07101 · doi:10.2307/1969308
[3] Barge, M, Martin, J: Chaos, periodicity, and snakelike continua. Trans. Am. Math. Soc. 289(1), 355-365 (1985) · Zbl 0559.58014 · doi:10.1090/S0002-9947-1985-0779069-7
[4] Barge, M, Martin, J: The construction of global attractors. Proc. Am. Math. Soc. 110(2), 523-525 (1990) · Zbl 0714.58036 · doi:10.1090/S0002-9939-1990-1023342-1
[5] Barge, M, Diamond, B: The dynamics of continuous maps of finite graphs through inverse limits. Trans. Am. Math. Soc. 344(2), 773-790 (1994) · Zbl 0812.58024 · doi:10.1090/S0002-9947-1994-1236222-1
[6] Boroński, JP, Oprocha, P: On indecomposability in chaotic attractors. Proc. Am. Math. Soc. 143(8), 3659-3670 (2015) · Zbl 1320.54021 · doi:10.1090/S0002-9939-2015-12526-9
[7] Misiurewicz, M, Smítal, J: Smooth chaotic maps with zero topological entropy. Ergod. Theory Dyn. Syst. 8, 421-424 (1988) · Zbl 0689.58028 · doi:10.1017/S0143385700004557
[8] Ingram, WT: Periodicity and indecomposability. Proc. Am. Math. Soc. 123, 1907-1916 (1995) · Zbl 0851.54036 · doi:10.1090/S0002-9939-1995-1283553-1
[9] Blokh, A: The spectral decomposition for one-dimensional maps. arXiv:math/9201290v1
[10] Engelking, R: Zarys Topologii Ogólnej (Polish) [Outline of General Topology]. Biblioteka Matematyczna, vol. 25. Państwowe Wydawnictwo Naukowe, Warsaw (1965) · Zbl 0141.39203
[11] Lewis, W., The pseudo-arc, No. 117, 103-123 (1991) · Zbl 0736.54027 · doi:10.1090/conm/117/1112808
[12] Chen, L.; Li, SH, Dynamical connections between a continuous map and its inverse limit space, No. 149, 89-97 (1993), New York · Zbl 0789.58067
[13] Bowen, R: Entropy for group endomorphism and homogeneous spaces. Trans. Am. Math. Soc. 153, 401-414 (1971) · Zbl 0212.29201 · doi:10.1090/S0002-9947-1971-0274707-X
[14] Du, B., Smooth weakly chaotic interval maps with zero topological entropy, Nagoya, 1990, River Edge
[15] López, VJ: An explicit description of all scrambled sets of weakly unimodal functions of type 2∞\(2^{\infty}\). Real Anal. Exch. 21, 664-688 (1995/96) · Zbl 0879.58044
[16] Block, LS, Coppel, WA: Dynamics in One Dimension. Lecture Notes in Mathematics. Springer, Berlin (1992) · Zbl 0746.58007
[17] Misiurewicz, M: Structure of mappings of an interval with zero entropy. Publ. Math. Inst. Hautes Études Sci. 53, 5-16 (1981) · Zbl 0477.58030 · doi:10.1007/BF02698685
[18] Jiménez López, V, Snoha, Ł: All maps of type 2∞\(2^{\infty}\) are boundary maps. Proc. Am. Math. Soc. 125(6), 1667-1673 (1997) · Zbl 0877.26005 · doi:10.1090/S0002-9939-97-03452-7
[19] Bruin, H, Štimac, S: Entropy of homeomorphisms on unimodal inverse limit spaces. Nonlinearity 26, 991-1000 (2013) · Zbl 1270.54038 · doi:10.1088/0951-7715/26/4/991
[20] Lü, J, Xiong, J, Ye, X: The inverse limit space and the dynamics of a graph map. Topol. Appl. 107(3), 275-295 (2000) · Zbl 0960.37017 · doi:10.1016/S0166-8641(99)00106-6
[21] Minc, P, Transue, WRR: Accessible points of hereditarily decomposable chainable continua. Trans. Am. Math. Soc. 332(2), 711-727 (1992) · Zbl 0752.54012 · doi:10.1090/S0002-9947-1992-1073777-2
[22] Henderson, GW: The pseudo-arc as an inverse limit with one binding map. Duke Math. J. 31, 421-425 (1964) · Zbl 0139.16202 · doi:10.1215/S0012-7094-64-03140-0
[23] Delahaye, J-P: Fonctions admettant des cycles d’ordre n’importe quelle puissance de 2 et aucun autre cycle (French) [Functions admitting cycles of any power of 2 and no other cycle]. C. R. Acad. Sci. Paris, Sér. A-B 291(4), A323-A325 (1980) · Zbl 0455.65084
[24] Rosenholtz, I: Absolute endpoints of chainable continua. Proc. Am. Math. Soc. 103(4), 1305-1314 (1988) · Zbl 0655.54024 · doi:10.1090/S0002-9939-1988-0955027-2
[25] Martínez-de-la-Vega, V, Minc, P: Uncountable families of metric compactifications of the ray. Topol. Appl. 173(15), 28-31 (2014) · Zbl 1297.54051 · doi:10.1016/j.topol.2014.04.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.