×

Group and Lie algebra filtrations and homotopy groups of spheres. (English) Zbl 1531.16019

The paper under review deals with group and Lie algebra filtrations and homotopy groups of spheres, as especially the authors establish a bridge between homotopy groups of spheres and commutator calculus in groups, and moreover they solve in this manner the “dimension problem” by providing a converse to the well-known Sjogren’s theorem: every abelian group of bounded exponent can be embedded in the dimension quotient of a group. This is proven by some special embeddings and by using a classical result of J. Wu [Math. Proc. Camb. Philos. Soc. 130, No. 3, 489–513 (2001; Zbl 0986.55013)]. In particular, this invalidates some long-standing results in the literature by utilizing a paramount theorem due to J.-P. Serre [C. R. Acad. Sci., Paris 231, 1408–1410 (1950; Zbl 0039.39702)]. Moreover, the authors explain in this manner Rips’s famous counterexample to the dimension conjecture in terms of the homotopy group \(\mathbb{Z}/2\mathbb{Z}\). They, finally, obtain analogous results in the context of Lie rings, namely that for every prime \(p\), there exists a Lie ring with \(p\)-torsion in some dimension quotient.
The paper is really quite well written and motivated, and it is one very comprehensive study of the presented subject that will be useful for many specialists in this area.

MSC:

16S34 Group rings
17B05 Structure theory for Lie algebras and superalgebras
20F14 Derived series, central series, and generalizations for groups
55Q40 Homotopy groups of spheres

Software:

GAP; GitHub

References:

[1] L.Bartholdi, ANQ : all nilpotent quotients, version 5.0.0, 2021. https://github.com/laurentbartholdi/anq
[2] L.Bartholdi and I. B. S.Passi, Lie dimension subrings, Internat. J. Algebra Comput.25 (2015), no. 8, 1301-1325. https://doi.org/10.1142/S0218196715500423. MR 3438163 · Zbl 1387.17009 · doi:10.1142/S0218196715500423
[3] R. H.Bott and H.Samelson, On the Pontryagin product in spaces of paths, Comment. Math. Helv.27 (1953), 320-337 (1954). https://doi.org/10.1007/BF02564566. MR 60233 · Zbl 0052.19301 · doi:10.1007/BF02564566
[4] M. R.Bridson and A.Haefliger, Metric spaces of non‐positive curvature, Springer, Berlin, 1999. MR 2000k:53038 · Zbl 0988.53001
[5] L. A.Bokut’ and G. P.Kukin, Algorithmic and combinatorial algebra, Mathematics and its Applications, vol. 255, Kluwer Academic Publishers Group, Dordrecht, 1994. MR 1292459 · Zbl 0826.17002
[6] L.Breen and R.Mikhailov, Derived functors of nonadditive functors and homotopy theory, Algebr. Geom. Topol.11 (2011), no. 1, 327-415. https://doi.org/10.2140/agt.2011.11.327. MR 2764044 · Zbl 1214.18012 · doi:10.2140/agt.2011.11.327
[7] A. K.Bousfield, E. B.Curtis, D. M.Kan, D. G.Quillen, D. L.Rector, and J. W.Schlesinger, The \({\rm mod-}p\) lower central series and the Adams spectral sequence, Topology5 (1966), 331-342. https://doi.org/10.1016/0040‐9383(66)90024‐3. MR 0199862 · Zbl 0158.20502 · doi:10.1016/0040‐9383(66)90024‐3
[8] P.Cartier, Remarques sur le théorème de Birkhoff‐Witt, Ann. Scuola Norm. Sup. Pisa (3)12 (1958), 1-4. (French.) MR 0098121 (20 #4583) · Zbl 0081.26302
[9] F. R.Cohen, On combinatorial group theory in homotopy, Homotopy theory and its applications (Cocoyoc, 1993), Contemp. Math., vol. 188, American Mathematical Society, Providence, RI, 1995, pp. 57-63. https://doi.org/10.1090/conm/188/02233. MR 1349129 · doi:10.1090/conm/188/02233
[10] F. R.Cohen and J.Wu, On braid groups, free groups, and the loop space of the 2‐sphere, Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Progr. Math., vol. 215, Birkhäuser, Basel, 2004, pp. 93-105. MR 2039761. · Zbl 1066.55010
[11] F. R.Cohen and J.Wu, Artin’s braid groups, free groups, and the loop space of the 2‐sphere, Q. J. Math.62 (2011), no. 4, 891-921. https://doi.org/10.1093/qmath/haq010. MR 2853222 · Zbl 1252.55005 · doi:10.1093/qmath/haq010
[12] P. M.Cohn, Generalization of a theorem of Magnus, Proc. Lond. Math. Soc. (3)2 (1952), 297-310. https://doi.org/10.1112/plms/s3‐2.1.297. MR 0051834 · Zbl 0047.02501 · doi:10.1112/plms/s3‐2.1.297
[13] E. B.Curtis, Some relations between homotopy and homology, Ann. of Math. (2)82 (1965), 386-413. https://doi.org/10.2307/1970703. MR 184231 · Zbl 0139.16503 · doi:10.2307/1970703
[14] A.Dold and D.Puppe, Homologie nicht‐additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble11 (1961), 201-312. (German, with French summary.) MR 0150183 · Zbl 0098.36005
[15] G.Ellis and R.Mikhailov, A colimit of classifying spaces, Adv. Math.223 (2010), no. 6, 2097-2113. https://doi.org/10.1016/j.aim.2009.11.003. MR 2601009 · Zbl 1200.55023 · doi:10.1016/j.aim.2009.11.003
[16] R. H.Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2)57 (1953), 547-560. MR 0053938 (14,843d) · Zbl 0050.25602
[17] K. T.Chen, R. H.Fox, and R. C.Lyndon, Free differential calculus. IV. The quotient groups of the lower central series, Ann. of Math. (2)68 (1958), 81-95. MR 0102539 (21 #1330) · Zbl 0083.01403
[18] The GAP Group, GAP : Groups, Algorithms, and Programming, Version 4.8.10, 2018. https://www.gap-system.org/
[19] R.Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol. 243, Springer, New York, 2008. MR 2365352 · Zbl 1141.57001
[20] B. I.Gray, On the sphere of origin of infinite families in the homotopy groups of spheres, Topology8 (1969), 219-232. https://doi.org/10.1016/0040‐9383(69)90012‐3. MR 245008 · Zbl 0176.52502 · doi:10.1016/0040‐9383(69)90012‐3
[21] M.Gromov, Asymptotic invariants of infinite groups, Geometric group theory, vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, Cambridge University Press, Cambridge, 1993, pp. 1-295. MR 1253544
[22] O.Grün, Über eine Faktorgruppe freier Gruppen I, Deutsche Mathematik1 (1936), 772-782. · JFM 62.1097.05
[23] N.Gupta and Y.Kuz’min, On varietal quotients defined by ideals generated by Fox derivatives, J. Pure Appl. Algebra78 (1992), no. 2, 165-172. https://doi.org/10.1016/0022‐4049(92)90094‐V. MR 1161340 · Zbl 0774.20004 · doi:10.1016/0022‐4049(92)90094‐V
[24] N. D.Gupta, Free group rings, Contemporary Mathematics, vol. 66, American Mathematical Society, Providence, RI, 1987. MR 895359 · Zbl 0641.20022
[25] N. D.Gupta, Dimension subgroups of metabelian \(p\)‐groups, J. Pure Appl. Algebra51 (1988), no. 3, 241-249. https://doi.org/10.1016/0022‐4049(88)90063‐1. MR 946575 · Zbl 0649.20004 · doi:10.1016/0022‐4049(88)90063‐1
[26] N. D.Gupta, A solution of the dimension subgroup problem, J. Algebra138 (1991), no. 2, 479-490. https://doi.org/10.1016/0021‐8693(91)90182‐8. MR 1102820 · Zbl 0729.20002 · doi:10.1016/0021‐8693(91)90182‐8
[27] N. D.Gupta, Lectures on dimension subgroups, Resenhas2 (1996), no. 3, 263-273. Group rings and related topics (Portuguese) (São Paulo, 1995). MR 1410298 · Zbl 0987.20500
[28] N. D.Gupta, The dimension subgroup conjecture holds for odd order groups, J. Group Theory5 (2002), no. 4, 481-491. MR 1931371 (2003m:20019) · Zbl 1009.20006
[29] P. J.Hilton, On the homotopy groups of the union of spheres, J. Lond. Math. Soc.30 (1955), 154-172. https://doi.org/10.1112/jlms/s1‐30.2.154. MR 68218 · Zbl 0064.17301 · doi:10.1112/jlms/s1‐30.2.154
[30] R.Huang and J.Wu, Combinatorics of double loop suspensions, evaluation maps and Cohen groups, J. Math. Soc. Japan72 (2020), no. 3, 847-889. https://doi.org/10.2969/jmsj/81678167. MR 4125848 · Zbl 1452.55013 · doi:10.2969/jmsj/81678167
[31] S. A.Jennings, The group ring of a class of infinite nilpotent groups, Canad. J. Math.7 (1955), 169-187. · Zbl 0066.01302
[32] M.Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. École Norm. Sup. (3)71 (1953), 101-190. · Zbl 0055.25103
[33] D.Leibowitz, The \(E^1\) term of the lower central series spectral sequence for the homotopy of spaces, Ph.D. thesis, Brandeis University, 1972.
[34] J. Y.Li and J.Wu, On symmetric commutator subgroups, braids, links and homotopy groups, Trans. Amer. Math. Soc.363 (2011), no. 7, 3829-3852. https://doi.org/10.1090/S0002‐9947‐2011‐05339‐0. MR 2775829 · Zbl 1225.55007 · doi:10.1090/S0002‐9947‐2011‐05339‐0
[35] W.deGraaf and S.Cicalò, LieRing: a GAP package, version 2.3, 2016. https://gap-packages.github.io/liering/
[36] X.‐S.Lin, Power series expansions and invariants of links, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., vol. 2, American Mathematical Society, Providence, RI, 1997, pp. 184-202. MR 1470727 · Zbl 0897.57006
[37] G.Losey, On dimension subgroups, Trans. Amer. Math. Soc.97 (1960), 474-486. https://doi.org/10.2307/1993383. MR 0148754 · Zbl 0119.26501 · doi:10.2307/1993383
[38] R. C.Lyndon and P. E.Schupp, Combinatorial group theory, Springer, Berlin, 1970.
[39] W.Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann.111 (1935), no. 1, 259-280. (German.) https://doi.org/10.1007/BF01472217. MR 1512992 · Zbl 0011.15201 · doi:10.1007/BF01472217
[40] W.Magnus, Über Beziehungen zwischen höheren Kommutatoren, J. Reine Angew. Math.177 (1937), 105-115. (German.) https://doi.org/10.1515/crll.1937.177.105. MR 1581549 · Zbl 0016.29401 · doi:10.1515/crll.1937.177.105
[41] W.Magnus, A.Karrass, and D.Solitar, Combinatorial group theory: presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York‐London‐Sydney, 1966. MR 0207802. · Zbl 0138.25604
[42] J. P.May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, NJ‐Toronto, Ont.‐London, 1967. MR 0222892. · Zbl 0165.26004
[43] R.Mikhailov and I. B. S.Passi, Lower central and dimension series of groups, Lecture Notes in Mathematics, vol. 1952, Springer, Berlin, 2009. MR 2460089 · Zbl 1157.20002
[44] R.Mikhailov, I. B. S.Passi, and J.Wu, Symmetric ideals in group rings and simplicial homotopy, J. Pure Appl. Algebra215 (2011), no. 5, 1085-1092. https://doi.org/10.1016/j.jpaa.2010.07.013. MR 2747240 · Zbl 1218.20003 · doi:10.1016/j.jpaa.2010.07.013
[45] R.Mikhailov and J.Wu, Combinatorial group theory and the homotopy groups of finite complexes, Geom. Topol.17 (2013), no. 1, 235-272. https://doi.org/10.2140/gt.2013.17.235. MR 3035327 · Zbl 1270.55011 · doi:10.2140/gt.2013.17.235
[46] R.Mikhailov, Homotopy theory of Lie functors, arXiv:1808.00681, 2018.
[47] E. A.O’Brien, The \(p\)‐group generation algorithm, J. Symbolic Comput.9 (1990), no. 5-6, 677-698. (Computational group theory, Part 1.) https://doi.org/10.1016/S0747‐7171(08)80082‐X. MR 1075431 · Zbl 0736.20001 · doi:10.1016/S0747‐7171(08)80082‐X
[48] I. B. S.Passi, Dimension subgroups, J. Algebra9 (1968), 152-182. https://doi.org/10.1016/0021‐8693(68)90018‐5. MR 0231916 · Zbl 0159.31503 · doi:10.1016/0021‐8693(68)90018‐5
[49] I. B. S.Passi, Group rings and their augmentation ideals, Lecture Notes in Mathematics, vol. 715, Springer, Berlin, 1979. MR 537126. · Zbl 0405.20007
[50] H.Prüfer, Untersuchungen über die Zerlegbarkeit der abzählbaren primären Abelschen Gruppen, Math. Z.17 (1923), no. 1, 35-61. (German.) https://doi.org/10.1007/BF01504333. MR 1544601 · JFM 49.0084.03 · doi:10.1007/BF01504333
[51] E.Rips, On the fourth integer dimension subgroup, Israel J. Math.12 (1972), 342-346. MR 0314988 (47 #3537). · Zbl 0267.20018
[52] F.Röhl, Review and some critical comments on a paper of Grün concerning the dimension subgroup conjecture, Bol. Soc. Brasil. Mat.16 (1985), 17. https://doi.org/10.1007/BF02584798. MR 847113 · Zbl 0615.20004 · doi:10.1007/BF02584798
[53] J. W.Schlesinger, The semi‐simplicial free Lie ring, Trans. Amer. Math. Soc.122 (1966), 436-442. https://doi.org/10.2307/1994559. MR 0199861 · Zbl 0163.17901 · doi:10.2307/1994559
[54] C.Schneider, Computing nilpotent quotients in finitely presented Lie rings, Discrete Math. Theor. Comput. Sci.1 (1997), no. 1, 1-16. MR 1471347 · Zbl 0976.17001
[55] J.‐P.Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2)54 (1951), 425-505. (French.) https://doi.org/10.2307/1969485. MR 0045386 · Zbl 0045.26003 · doi:10.2307/1969485
[56] T.Sicking, Dimension subrings of Lie rings, Ph.D. thesis, Göttingen University, 2020.
[57] J. A.Sjogren, Dimension and lower central subgroups, J. Pure Appl. Algebra14 (1979), no. 2, 175-194. https://doi.org/10.1016/0022‐4049(79)90006‐9. MR 524186 · Zbl 0395.20019 · doi:10.1016/0022‐4049(79)90006‐9
[58] J. R.Stallings, Quotients of the powers of the augmentation ideal in a group ring, Knots, groups, and 3‐manifolds, Ann. of Math. Studies, No. 84 (Papers dedicated to the memory of R. H. Fox), Princeton University Press, Princeton, NJ, 1975, pp. 101-118. https://doi.org/10.1515/9781400881512-010. MR 0379685 · Zbl 0313.20019 · doi:10.1515/9781400881512-010
[59] K.‐I.Tahara, The fourth dimension subgroups and polynomial maps, J. Algebra45 (1977), no. 1, 102-131. https://doi.org/10.1016/0021‐8693(77)90365‐9. MR 0432763 · Zbl 0345.20034 · doi:10.1016/0021‐8693(77)90365‐9
[60] K.‐I.Tahara, The augmentation quotients of group rings and the fifth dimension subgroups, J. Algebra71 (1981), no. 1, 141-173. https://doi.org/10.1016/0021‐8693(81)90111‐3. MR 627430 · Zbl 0478.20004 · doi:10.1016/0021‐8693(81)90111‐3
[61] E.Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math.177 (1937), 152-160. (German.) https://doi.org/10.1515/crll.1937.177.152. MR 1581553 · JFM 63.0089.02 · doi:10.1515/crll.1937.177.152
[62] J.Wu, Combinatorial descriptions of homotopy groups of certain spaces, Math. Proc. Cambridge Philos. Soc.130 (2001), no. 3, 489-513. https://doi.org/10.1017/S030500410100487X. MR 1816806 · Zbl 0986.55013 · doi:10.1017/S030500410100487X
[63] J.Wu, Simplicial objects and homotopy groups, Braids, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 19, World Sci. Publ., Hackensack, NJ, 2010, pp. 31-181. https://doi.org/10.1142/9789814291415_0002. MR 2605306 · Zbl 1209.55001 · doi:10.1142/9789814291415_0002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.